Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MALAT1 modulated FOXP3 ubiquitination then affected GINS1 transcription and drived NSCLC proliferation

Abstract

An increasing number of studies have shown that long-noncoding RNAs (lncRNAs) are involved in the post-translational modifications (PTMs) of protein in a variety of tumors. However, little is known about the exact regulation mechanism of lncRNAs in regulating PTMs in non-small-cell lung carcinoma (NSCLC) proliferation. Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) and GINS complex subunit 1(GINS1) both were upregulated and promoted proliferation progression in NSCLC. In this study, the clinicopathologic significance of MALAT1 and GINS1 in NSCLC was investigated, a positive correlation in their expression was found. The silencing of MALAT1 decreased GINS1 expression and inhibited NSCLC proliferation in vitro and in vivo. The upregulation of GINS1 reversed NSCLC proliferation inhibited by MALAT1 knockdown. FOXP3 (forkhead box protein 3) was identified as the critical transcription factor for GINS1 transcription. In addition, MALAT1 could stabilize FOXP3 by binding to zinc finger (ZF) domain and leucine zipper (LZ) domain of FOXP3. Interestingly, these two domains were also interaction domains for FOXP3 binding with E3 ligase STUB1 (STIP1 homology and U-box containing protein 1). In this way, MALAT1 masked the protein-interacting domain, and inhibited FOXP3 ubiquitination by STUB1. Together, our results identified a novel regulatory axis of MALAT1-FOXP3-GINS1, and demonstrated that MALAT1 played an important modulatory role in PTM of FOXP3 which affects GINS1 transcription and drives proliferation character in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MALAT1 and GINS1 expression are both upregulated in NSCLC samples and are closely related to NSCLC progression.
Fig. 2: Stable knockdown of MALAT1 represses GINS1 expression and inhibits NSCLC proliferation in vitro and in vivo.
Fig. 3: GINS1 is critical for MALAT1-mediated NSCLC cell proliferation.
Fig. 4: FOXP3 is essential for the MALAT1-mediated GINS1 transcription.
Fig. 5: MALAT1 stabilizes FOXP3 through inhibiting the ubiquitination of FOXP3.
Fig. 6: MALAT1 stabilizes FOXP3 by blocking FOXP3 interaction with E3 ligase STUB1 in NSCLC cells.
Fig. 7: The PTM model of MALAT1 involved in target protein modification was proposed.

Similar content being viewed by others

References

  1. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5:90 https://doi.org/10.1038/s41392-020-0196-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63 https://doi.org/10.1186/s13045-018-0606-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41. https://doi.org/10.1038/sj.onc.1206928.

    Article  PubMed  Google Scholar 

  4. Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res. 2019;79:2480–93. https://doi.org/10.1158/0008-5472.CAN-18-1432.

    Article  CAS  PubMed  Google Scholar 

  5. Yu W, Ding J, He M, Chen Y, Wang R, Han Z, et al. Estrogen receptor beta promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene. 2019;38:1225–38. https://doi.org/10.1038/s41388-018-0463-1.

    Article  CAS  PubMed  Google Scholar 

  6. Li S, Ma F, Jiang K, Shan H, Shi M, Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 promotes lung adenocarcinoma by directly interacting with specificity protein 1. Cancer Sci. 2018;109:1346–56. https://doi.org/10.1111/cas.13587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3’-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 2016;113:14013–8. https://doi.org/10.1073/pnas.1614759113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic acids Res. 2017;45:6051–63. https://doi.org/10.1093/nar/gkx141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen R, Liu Y, Zhuang H, Yang B, Hei K, Xiao M, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic acids Res. 2017;45:9947–59. https://doi.org/10.1093/nar/gkx600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat cell Biol. 2006;8:358–66. https://doi.org/10.1038/ncb1382.

    Article  CAS  PubMed  Google Scholar 

  11. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol cell. 2010;37:247–58. https://doi.org/10.1016/j.molcel.2009.12.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010;79:89–130. https://doi.org/10.1146/annurev.biochem.052308.103205.

    Article  CAS  PubMed  Google Scholar 

  13. Cottineau J, Kottemann MC, Lach FP, Kang YH, Vely F, Deenick EK, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Investig. 2017;127:1991–2006. https://doi.org/10.1172/JCI90727.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ueno M, Itoh M, Kong L, Sugihara K, Asano M, Takakura N. PSF1 is essential for early embryogenesis in mice. Mol Cell Biol. 2005;25:10528–32. https://doi.org/10.1128/MCB.25.23.10528-10532.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Srinivasan SV, Dominguez-Sola D, Wang LC, Hyrien O, Gautier J. Cdc45 is a critical effector of myc-dependent DNA replication stress. Cell Rep. 2013;3:1629–39. https://doi.org/10.1016/j.celrep.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  16. Nakahara I, Miyamoto M, Shibata T, Akashi-Tanaka S, Kinoshita T, Mogushi K, et al. Upregulation of PSF1 promotes the growth of breast cancer cells. Genes Cells: devoted Mol Cell mechanisms. 2010;15:1015–24. https://doi.org/10.1111/j.1365-2443.2010.01442.x.

    Article  CAS  Google Scholar 

  17. Lian YF, Li SS, Huang YL, Wei H, Chen DM, Wang JL, et al. Upregulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma. Biosci rep. 2018;38. https://doi.org/10.1042/BSR20181178.

  18. Tang L, Yu W, Wang Y, Li H, Shen Z. Anlotinib inhibits synovial sarcoma by targeting GINS1: a novel downstream target oncogene in progression of synovial sarcoma. Clin Transl Oncol: Off Publ Federation Span Oncol Societies Natl Cancer Inst Mex. 2019;21:1624–33. https://doi.org/10.1007/s12094-019-02090-2.

    Article  CAS  Google Scholar 

  19. Tahara H, Naito H, Kise K, Wakabayashi T, Kamoi K, Okihara K, et al. Evaluation of PSF1 as a prognostic biomarker for prostate cancer. Prostate cancer prostatic Dis. 2015;18:56–62. https://doi.org/10.1038/pcan.2014.46.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Wu Q, Wang Z, Zhang Y, Zhang G, Fu J, et al. Knockdown of PSF1 expression inhibits cell proliferation in lung cancer cells in vitro. Tumour Biol: J Int Soc Oncodev Biol Med. 2015;36:2163–8. https://doi.org/10.1007/s13277-014-2826-8.

    Article  CAS  Google Scholar 

  21. Cunha LL, Morari EC, Nonogaki S, Soares FA, Vassallo J, Ward LS. Foxp3 expression is associated with aggressiveness in differentiated thyroid carcinomas. Clinics. 2012;67:483–8. https://doi.org/10.6061/clinics/2012(05)13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/beta-catenin signaling pathway and EMT in non-small cell lung cancer. Mol cancer. 2017;16:124 https://doi.org/10.1186/s12943-017-0700-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Li X, Wei X, Jiang H, Lan C, Yang S, et al. PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC. Signal Transduct Target Ther. 2020;5:38 https://doi.org/10.1038/s41392-020-0144-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma H, Gao W, Sun X, Wang. WSTAT5 and TET2 cooperate to regulate FOXP3-TSDR demethylation in CD4(+) T cells of patients with colorectal cancer. J Immunol Res. 2018;2018:6985031 https://doi.org/10.1155/2018/6985031.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szylberg L, Karbownik D, Marszalek A. The role of FOXP3 in human cancers. Anticancer Res. 2016;36:3789–94.

    CAS  PubMed  Google Scholar 

  26. Jia H, Qi H, Gong Z, Yang S, Ren J, Liu Y, et al. The expression of FOXP3 and its role in human cancers. Biochimica et biophysica acta Rev cancer. 2019;1871:170–8. https://doi.org/10.1016/j.bbcan.2018.12.004.

    Article  CAS  Google Scholar 

  27. Loo CS, Gatchalian J, Liang Y, Leblanc M, Xie M, Ho J, et al. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity. 2020;53:143–57. https://doi.org/10.1016/j.immuni.2020.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013;39:272–85. https://doi.org/10.1016/j.immuni.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  29. Ma X, Dang Y, Shao X, Chen X, Wu F, Li Y. Ubiquitination and long non-coding RNAs regulate actin cytoskeleton regulators in cancer progression. Int j of mol sci. 2019;20. https://doi.org/10.3390/ijms20122997.

  30. Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–14. https://doi.org/10.1080/15476286.2017.1358347.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12:135 https://doi.org/10.1186/s13045-019-0830-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, Wang Q, Qiang Q, Shan H, Shi M, Chen B, et al. Sp1-mediated transcriptional regulation of MALAT1 plays a critical role in tumor. J cancer Res Clin Oncol. 2015;141:1909–20. https://doi.org/10.1007/s00432-015-1951-0.

    Article  CAS  PubMed  Google Scholar 

  33. Stamato MA, Juli G, Romeo E, Ronchetti D, Arbitrio M, Caracciolo D, et al. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget. 2017;8:106527–37. https://doi.org/10.18632/oncotarget.22507.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Zhu Y, Li S, Chen X, Jiang G, Shen Z, et al. Long noncoding RNA MALAT1 promotes malignant development of esophageal squamous cell carcinoma by targeting beta-catenin via Ezh2. Oncotarget. 2016;7:25668–82. https://doi.org/10.18632/oncotarget.8257.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol cell. 2010;39:925–38. https://doi.org/10.1016/j.molcel.2010.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 2015;13:209–21. https://doi.org/10.1016/j.celrep.2015.08.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang R, Tang J, Chen Y, Deng L, Ji J, Xie Y, et al. The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun. 2017;8:15129 https://doi.org/10.1038/ncomms15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, et al. MetaLnc9 facilitates lung cancer metastasis via a PGK1-activated AKT/mTOR pathway. Cancer Res. 2017;77:5782–94. https://doi.org/10.1158/0008-5472.CAN-17-0671.

    Article  CAS  PubMed  Google Scholar 

  39. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17:1153–65. https://doi.org/10.1101/gad.1065903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol. 2015;12:558–65. https://doi.org/10.1038/cmi.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, et al. Molecular mechanisms controlling Foxp3 expression in health and autoimmunity: from epigenetic to post-translational regulation. Front Immunol. 2019;10:3136 https://doi.org/10.3389/fimmu.2019.03136

    Article  CAS  PubMed  Google Scholar 

  42. Kwon HS, Lim HW, Wu J, Schnolzer M, Verdin E, Ott M. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J Immunol. 2012;188:2712–21. https://doi.org/10.4049/jimmunol.1100903.

    Article  CAS  PubMed  Google Scholar 

  43. Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y, et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 2012;1:665–75. https://doi.org/10.1016/j.celrep.2012.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, et al. Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat Med. 2013;19:1173–7. https://doi.org/10.1038/nm.3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115:965–74. https://doi.org/10.1182/blood-2009-02-207118.

    Article  PubMed  Google Scholar 

  46. Li M, Zhou W, Yuan R, Chen L, Liu T, Huang D, et al. ROCK2 promotes HCC proliferation by CEBPD inhibition through phospho-GSK3beta/beta-catenin signaling. FEBS Lett. 2015;589:1018–25. https://doi.org/10.1016/j.febslet.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Shi, M., Hu, C. et al. MALAT1 modulated FOXP3 ubiquitination then affected GINS1 transcription and drived NSCLC proliferation. Oncogene 40, 3870–3884 (2021). https://doi.org/10.1038/s41388-021-01816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01816-3

This article is cited by

Search

Quick links