Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers

Abstract

Proteomic signatures associated with clinical measures of more aggressive cancers could yield molecular clues as to disease drivers. Here, utilizing the Clinical Proteomic Tumor Analysis Consortium (CPTAC) mass-spectrometry-based proteomics datasets, we defined differentially expressed proteins and mRNAs associated with higher grade or higher stage, for each of seven cancer types (breast, colon, lung adenocarcinoma, clear cell renal, ovarian, uterine, and pediatric glioma), representing 794 patients. Widespread differential patterns of total proteins and phosphoproteins involved some common patterns shared between different cancer types. More proteins were associated with higher grade than higher stage. Most proteomic signatures predicted patient survival in independent transcriptomic datasets. The proteomic grade signatures, in particular, involved DNA copy number alterations. Pathways of interest were enriched within the grade-associated proteins across multiple cancer types, including pathways of altered metabolism, Warburg-like effects, and translation factors. Proteomic grade correlations identified protein kinases having functional impact in vitro in uterine endometrial cancer cells, including MAP3K2, MASTL, and TTK. The protein-level grade and stage associations for all proteins profiled—along with corresponding information on phosphorylation, pathways, mRNA expression, and copy alterations—represent a resource for identifying new potential targets. Proteomic analyses are often concordant with corresponding transcriptomic analyses, but with notable exceptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteomic and transcriptomic signatures of high grade or high stage cancers, according to cancer type.
Fig. 2: For specific cancer types, the corresponding proteomic signatures of grade or stage are associated with worse patient survival across independent patient cohorts.
Fig. 3: Proteins shared among the cancer type-specific grade or stage proteomic signatures.
Fig. 4: Copy Number Alterations (CNAs) associated with proteomic signatures of higher versus lower grade cancers.
Fig. 5: Pathways associated with proteomic or transcriptomic signatures of high grade cancers.
Fig. 6: Functional evaluation of kinases in malignant uterine cancer cells.

Similar content being viewed by others

References

  1. Zhang Y, Kwok-Shing NgP, Kucherlapati M, Chen F, Liu Y, Tsang Y, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31:820–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen G, Gharib T, Huang C, Taylor J, Misek D, Kardia S, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteom. 2002;1:304–13.

    Article  CAS  Google Scholar 

  3. Mertins P, Mani D, Ruggles K, Gillette M, Clauser K, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang H, Liu T, Zhang Z, Payne S, Zhang B, McDermott J, et al. Integrated proteogenomic characterization of human high-grade serous ovarian. Cancer Cell. 2016;166:755–65.

    CAS  Google Scholar 

  6. Dou Y, Kawaler E, Cui Zhou D, Gritsenko M, Huang C, Blumenberg L, et al. Proteogenomic characterization of endometrial carcinoma. Cell. 2020;180:729–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gillette M, Satpathy S, Cao S, Dhanasekaran S, Vasaikar S, Krug K, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell. 2020;182:200–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasaikar S, Huang C, Wang X, Petyuk V, Savage S, Wen B, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 2019;177:1035–1049. e1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. The_Cancer_Genome_Atlas_Research_Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49.

    Article  PubMed Central  CAS  Google Scholar 

  10. Yuan Y, Van Allen E, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat Biotechnol. 2014;32:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akbani R, Ng P, Werner H, Shahmoradgoli M, Zhang F, Ju Z. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 2014;5:3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer_Genome_Atlas_Research_Network, Weinstein J, Collisson E, Mills G, Shaw K, Ozenberger B, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  PubMed Central  CAS  Google Scholar 

  13. Chen F, Zhang Y, Gibbons D, Deneen B, Kwiatkowski D, Ittmann M, et al. Pan-cancer molecular classes transcending tumor lineage across 32 cancer types, multiple data platforms, and over 10,000 cases. Clin Cancer Res. 2018;24:2182–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen F, Chandrashekar D, Varambally S, Creighton C. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun. 2019;10:5679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rhodes D, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA. 2004;101:9309–14.

    Article  CAS  PubMed  Google Scholar 

  16. Louis D, Perry A, Burger P, Ellison D, Reifenberger G, von Deimling A, et al. International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 2014;24:429–35.

    Article  PubMed  Google Scholar 

  17. Chandrashekar D, Bashel B, Balasubramanya S, Creighton C, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen F, Zhang Y, Parra E, Rodriguez J, Behrens C, Akbani R, et al. Multiplatform-based molecular subtypes of non-small cell lung cancer. Oncogene. 2016;36:1384–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cancer_Genome_Atlas_Research_Network, Kandoth C, Schultz N, Cherniack A, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  CAS  Google Scholar 

  20. Bonome T, Lee J, Park D, Radonovich M, Pise-Masison C, Brady J, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005;65:10602–12.

    Article  CAS  PubMed  Google Scholar 

  21. Crijns A, Fehrmann R, de Jong S, Gerbens F, Meersma G, Klip H, et al. Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med. 2009;6:e24.

    Article  PubMed  CAS  Google Scholar 

  22. Denkert C, Budczies J, Darb-Esfahani S, Györffy B, Sehouli J, Könsgen D, et al. A prognostic gene expression index in ovarian cancer - validation across different independent data sets. J Pathol. 2009;218:273–80.

    Article  PubMed  Google Scholar 

  23. Dressman H, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol. 2007;25:517–25.

    Article  CAS  PubMed  Google Scholar 

  24. Tothill R, Tinker A, George J, Brown R, Fox S, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14:5198–208.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H. et al. High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res. 2012;18:1374–85.

    Article  CAS  PubMed  Google Scholar 

  26. Pereira B, Chin S, Rueda O, Vollan H, Provenzano E, Bardwell H. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jorissen R, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer. Clin Cancer Res. 2009;15:7642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks J. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3:e13.

    Article  PubMed  CAS  Google Scholar 

  29. Slenter D, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018;46:D661–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sridhar R, Hanson-Painton O, Cooper D. Protein kinases as therapeutic targets. Pharm Res. 2000;17:1345–53.

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  32. Creighton C, Beer D, Hanash S. Gene expression patterns define pathways correlated with loss of differentiation in lung adenocarcinomas. FEBS Lett. 2003;540:167–70.

    Article  CAS  PubMed  Google Scholar 

  33. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–46.

    Article  CAS  PubMed  Google Scholar 

  34. Clark D, Dhanasekaran S, Petralia F, Pan J, Song X, Hu Y, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179:964–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen G, Gharib T, Wang H, Huang C, Kuick R, Thomas D, et al. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci USA. 2003;100:13537–42.

    Article  CAS  PubMed  Google Scholar 

  36. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmad S, St Hilaire V, Dandepally S, Johnson G, Williams A, Scott J. Discovery and characterization of an iminocoumarin scaffold as an inhibitor of MEKK2 (MAP3K2). Biochem Biophys Res Commun. 2018;496:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fatima I, Singh A, Dhawan P. MASTL: A novel therapeutic target for Cancer Malignancy. Cancer Med. 2020;9:6322–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Libouban M, de Roos J, Uitdehaag J, Willemsen-Seegers N, Mainardi S, Dylus J, et al. Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget. 2017;8:38309–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ellis M, Gillette M, Carr S, Paulovich A, Smith R, Rodland K, et al. Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium. Cancer Disco. 2013;3:1108–12.

    Article  CAS  Google Scholar 

  41. Edwards N, Oberti M, Thangudu R, Cai S, McGarvey P, Jacob S, et al. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14:2707–13.

    Article  CAS  PubMed  Google Scholar 

  42. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.

    Article  CAS  PubMed  Google Scholar 

  43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Creighton C, Nagaraja A, Hanash S, Matzuk M, Gunaratne P. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA. 2008;14:2290–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cancer_Genome_Atlas_Research_Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474: 609–15.

  46. Creighton C, Hernandez-Herrera A, Jacobsen A, Levine D, Mankoo P, Schultz N, et al. Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS ONE. 2012;7:e34546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was conducted using data made available by The Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Children’s Brain Tumor Tissue Consortium (CBTTC), and The Cancer Genome Atlas (TCGA) Consortium. This work was supported by National Institutes of Health (NIH) grants P30CA125123 (CJC), P20CA221729 (MMM), R00HD096057 (DM), and a Core Facility Support Award from the Cancer Prevention Research Institute of Texas (RP160805 (MMM)). Diana Monsivais holds a PDEP Award from the Burroughs Wellcome Fund. We thank Jonathan Kurie for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CJC, DM, YV; Methodology: CJC, FC, YZ, DM, YV; Investigation: CJC, FC, YZ, RPM, MES, DM, YV, JCF, MMM; Formal Analysis: CJC, FC, YZ, DSC, JCF; Data Curation: CJC, SV, DSC; Visualization; CJC; Writing: CJC, DM, YV; Manuscript Review: FC, YZ, DSC, RPM, MES; Supervision: CJC, SV, DM, MMM.

Corresponding authors

Correspondence to Diana Monsivais or Chad J. Creighton.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monsivais, D., Vasquez, Y.M., Chen, F. et al. Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene 40, 2081–2095 (2021). https://doi.org/10.1038/s41388-021-01681-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01681-0

This article is cited by

Search

Quick links