Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ribosomal protein S11 influences glioma response to TOP2 poisons

Abstract

Topoisomerase II poisons are one of the most common class of chemotherapeutics used in cancer. We and others had shown that a subset of glioblastomas, the most malignant of all primary brain tumors in adults, is responsive to TOP2 poisons. To identify genes that confer susceptibility to this drug in gliomas, we performed a genome-scale CRISPR knockout screen with etoposide. Genes involved in protein synthesis and DNA damage were implicated in etoposide susceptibility. To define potential biomarkers for TOP2 poisons, CRISPR hits were overlapped with genes whose expression correlates with susceptibility to this drug across glioma cell lines, revealing ribosomal protein subunit RPS11, 16, and 18 as putative biomarkers for response to TOP2 poisons. Loss of RPS11 led to resistance to etoposide and doxorubicin and impaired the induction of proapoptotic gene APAF1 following treatment. The expression of these ribosomal subunits was also associated with susceptibility to TOP2 poisons across cell lines from gliomas and multiple other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR screen in glioma cells reveals genes that confer susceptibility to etoposide.
Fig. 2: DNA damage and repair response contribute to GBM shared genetic susceptibility to TOP2 poisons.
Fig. 3: Ribosomal subunit proteins control GBM susceptibility to TOP2 poisons and are biomarker for favorable response.
Fig. 4: Ribosomal subunit proteins 11, 16, and 18 influences etoposide response across cell lines from different cancers.
Fig. 5: RPS11 confers susceptibility to TOP2 poisons by controlling nascent proteins and upregulating proapoptosome machinery APAF1.

Similar content being viewed by others

References

  1. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37.

    Article  CAS  PubMed  Google Scholar 

  4. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164:550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nitiss JL. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer. 2009;9:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehta A, Awah CU, Sonabend AM. Topoisomerase II poisons for glioblastoma; existing challenges and opportunities to personalize therapy. Front Neurol. 2018;9:459.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sonabend AM, Carminucci AS, Amendolara B, Bansal M, Leung R, Lei L, et al. Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma. Neuro Oncol. 2014;16:1210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kesari S, Schiff D, Doherty L, Gigas DC, Batchelor TT, Muzikansky A, et al. Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro Oncol. 2007;9:354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, Sathornsumetee S, et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer. 2009;101:1986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leonard A, Wolff JE. Etoposide improves survival in high-grade glioma: a meta-analysis. Anticancer Res. 2013;33:3307–15.

    CAS  PubMed  Google Scholar 

  12. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD. et al. Genome-scale CRISPR-Cas9 knockout transcriptional activation Screen. Nat Protoc. 2017;12:828–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    Article  CAS  PubMed  Google Scholar 

  16. Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol. 2011;104:629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zucchetti M, Rossi C, Knerich R, Donelli MG, Butti G, Silvani V, et al. Concentrations of VP16 and VM26 in human brain tumors. Ann Oncol. 1991;2:63–6.

    Article  CAS  PubMed  Google Scholar 

  18. Stewart DJ, Richard MT, Hugenholtz H, Dennery JM, Belanger R, Gerin-Lajoie J, et al. Penetration of VP-16 (etoposide) into human intracerebral and extracerebral tumors. J Neurooncol. 1984;2:133–9.

    CAS  PubMed  Google Scholar 

  19. Koschmann C, Calinescu AA, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med. 2016;8:328ra28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Michlits G, Hubmann M, Wu SH, Vainorius G, Budusan E, Zhuk S, et al. CRISPR-UMI: single-cell lineage tracing of pooled CRISPR-Cas9 screens. Nat Methods. 2017;14:1191–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80–4.

    Article  CAS  PubMed  Google Scholar 

  22. Wijdeven RH, Pang B, van der Zanden SY, Qiao X, Blomen V, Hoogstraat M, et al. Genome-wide identification and characterization of novel factors conferring resistance to topoisomerase II poisons in cancer. Cancer Res. 2015;75:4176–87.

    Article  CAS  PubMed  Google Scholar 

  23. Cancer Cell Line Encyclopedia, C. and C. Genomics of Drug Sensitivity in Cancer. Pharmacogenomic agreement between two cancer cell line data sets. Nature. 2015;528:84–7.

    Article  CAS  Google Scholar 

  24. Forbes SA, Beare D, Bindal N, Bamford S, Ward S, Cole CG, et al. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr Protoc Hum Genet. 2016;91:10111–37.

    Article  Google Scholar 

  25. Uuskula-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016;17:182.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17:337–49.

    Article  CAS  PubMed  Google Scholar 

  27. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol. 2010;649:247–56.

    Article  CAS  PubMed  Google Scholar 

  28. Forester CM. et al. Revealing nascent proteomics in signaling pathways and cell differerentiation. Proc Natl Acad Sci USA. 2018;115:2353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sapio RT, Nezdyur AN, Krevetski M, Anikin L, Manna VJ, Minkovsky N, et al. Inhibition of post-transcriptional steps in ribosome biogenesis confers cytoprotection against chemotherapeutic agents in a p53-dependent manner. Sci Rep. 2017;7:9041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pop C, Salvesen GS. The nematode death machine in 3D. Cell. 2005;123:192–3.

    Article  CAS  PubMed  Google Scholar 

  31. Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell. 2006;22:269–75.

    Article  CAS  PubMed  Google Scholar 

  32. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer S. A role for proapoptotic BID in the DNA-damage response. Cell. 2005;122:579–91.

    Article  CAS  PubMed  Google Scholar 

  33. Mjelle R, Hegre SA, Aas PA, Slupphaug G, Drabløs F, Saetrom P, et al. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair. 2015;30:53–67.

    Article  CAS  PubMed  Google Scholar 

  34. Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, et al. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell. 2006;23:121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24:927–30.

    Article  CAS  PubMed  Google Scholar 

  36. Barnoud D, Pinçon C, Bruno B, Béné J, Gautier S, Lahoche A, et al. Acute kidney injury after high dose etoposide phosphate: a retrospective study in children receiving an allogeneic hematopoetic stem cell transplantation. Pediatr Blood Cancer. 2018;65:e27038.

    Article  PubMed  CAS  Google Scholar 

  37. Girling DJ. Comparison of oral etoposide and standard intravenous multidrug chemotherapy for small-cell lung cancer: a stopped multicentre randomised trial. Medical Research Council Lung Cancer Working Party. Lancet. 1996;348:563–6.

    Article  CAS  PubMed  Google Scholar 

  38. Franceschi E, Cavallo G, Scopece L, Paioli A, Pession A, Magrini E, et al. Phase II trial of carboplatin and etoposide for patients with recurrent high-grade glioma. Br J Cancer. 2004;91:1038–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krisp, C, Parker R, Pascovici D, Hayward NK, Wilmott JS, Thompson JF, et al. Proteomic phenotyping of metastatic melanoma reveals putative signatures of MEK inhibitor response and prognosis. Br J Cancer. 2018.

  40. Moreno P, Jim‚nez-Jim‚nez C, Garrido-Rodr¡guez M, Calder¢n-Santiago M, Molina S, Lara-Chica M. Metabolomic profiling of human lung tumor tissues: nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol. 2018;12:1778–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsai CH, Chen YT, Chang YH, Hsueh C, Liu CY, Chang YS, et al. Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens. Oncotarget. 2018;9:30731–47.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25:3793–801.

    Article  PubMed  Google Scholar 

  43. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med. 2016;8:343re2. https://doi.org/10.1126/scitranslmed.aaf6086.

    Article  PubMed  Google Scholar 

  44. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9:321 https://doi.org/10.1038/s41598-018-36340-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A, et al. Brainstem blood brain barrier disruption using focused ultrasound: a demonstration of feasibility and enhanced doxorubicin delivery. J Control Release. 2018;281:29–41. https://doi.org/10.1016/j.jconrel.2018.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin YL, Wu MT, Yang FY. Pharmacokinetics of doxorubicin in glioblastoma multiforme following ultrasound-Induced blood-brain barrier disruption as determined by microdialysis. J Pharm Biomed Anal. 2018;149:482–7. https://doi.org/10.1016/j.jpba.2017.11.047.

    Article  CAS  PubMed  Google Scholar 

  47. Sun T, Zhang Y, Power C, Alexander PM, Sutton JT, Aryal M, et al. Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci USA. 2017;114:E10281–E10290. https://doi.org/10.1073/pnas.1713328114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sonabend AM, Stupp R. Overcoming the blood brain barrier with an implantable ultrasound device. Clin Cancer Res. 2019;25:3750–2. https://doi.org/10.1158/1078-0432.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Winter. J Schwering M, Pelz O, Rauscher B, Zhan T, Heigwer F, et al. CRISPRAnalyzeR: interactive analysis, annotation and documentation of pooled CRISPR screens. 2017. https://doi.org/10.1101/109967.

  50. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  51. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics. 2007;23:3251–3.

    Article  CAS  PubMed  Google Scholar 

  52. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986;6:2895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by 5DP5OD021356-05 (AMS), P50CA221747 SPORE for Translational Approaches to Brain Cancer (AMS), and Developmental funds from The Robert H. Lurie NCI Cancer Center Support Grant #P30CA060553 (AMS), and generous philanthropic support from Dan and Sharon Moceri. We thank Dr. Ichiro Nakano (University of Alabama), Dr. Charles David James (Northwestern University), and Dr. Shi-Yuan Cheng (Northwestern University) for the kind gift of the GBM xenografts. We thank Dr. Peng Zhang (Northwestern University) for technical support with culture of GBM PDX. We thank Synthego, CA, USA, for the gifts of RPS11 sgRNA guides. Immunofluorescence imaging work was performed at the Center for Advanced Microscopy/Nikon Imaging Center and RHLCCC - Flow Cytometry Core, Northwestern University supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. BG was supported by the NVKP 16-1-2016-0037 grant.

Author information

Authors and Affiliations

Authors

Contributions

AMS and CUA conceived the idea of this project. CUA, AM, and LC performed the genome-scale CRISPR screen. JW and CUA performed the screen analysis. MB and CUA performed the combinatorial analysis to predict biomarkers. CUA performed the single-gene editing and all validations. ML contributed to organizing and curating the large-scale data used in this work. CUA, LW, and ZD performed western blots. EF contributed in cell culture. DY and CUA performed the immunohistochemistry, EBG and CP transduced lentivirus with RPS11 overexpression vector. MZ and CUA performed the flow cytometry analysis. SK contributed to the CRISPR screen. IVB contributed reagents and corrected the manuscript. CUA and RM performed the DNA damage analysis on edited cells and GBM cell lines, respectively, and LC performed 53BP1 staining. BG, KBB, and DMS performed oversaw statistical analysis. AMS, PH, and AH supervised the project. CUA, MZ, and AMS prepared figures. CUA and AMS wrote the manuscript.

Corresponding author

Correspondence to Adam M. Sonabend.

Ethics declarations

Conflict of interest

The authors declare a conflict of interest as a patent has been filed based on the findings from this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awah, C.U., Chen, L., Bansal, M. et al. Ribosomal protein S11 influences glioma response to TOP2 poisons. Oncogene 39, 5068–5081 (2020). https://doi.org/10.1038/s41388-020-1342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1342-0

This article is cited by

Search

Quick links