Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer

This article was retracted on 07 July 2023

This article has been updated

Abstract

Trastuzumab resistance has been becoming a major obstacle for treatment of HER-2-positive breast cancer patients. Increasing evidence suggests that mesenchymal stem cells (MSCs) play critical roles during the formation of drug resistance, however, the underlying mechanism is not well known. In this study, mass spectrometry, RNA pulldown and RNA immunoprecipitation assays were performed to verify the direct interactions among AGAP2-AS1 and other associated targets, such as human antigen R (HuR), miR-15a-5p, and carnitine palmitoyl transferase 1 (CPT1). In vitro and in vivo experimental assays were done to clarify the functional role of AGAP2-AS1 in trastuzumab resistance, stemness, and fatty acid oxidation (FAO). The results showed that MSC co-culture induced trastuzumab resistance. AGAP2-AS1 was upregulated in MSC-cultured cells, and knockdown of AGAP2-AS1 reversed the MSC-mediated trastuzumab resistance. Furthermore, MSC culture-induced AGAP2-AS1 regulates stemness and trastuzumab resistance via activating FAO. Mechanistically, AGAP2-AS1 is associated with HuR, and the AGAP2-AS1–HuR complex could directly bind to the CPT1, increasing its expression via improving RNA stability. In addition, AGAP2-AS1 could serve as ceRNA via sponging miR-15a-5p and releasing CPT1 mRNA. Clinically, increased expression of serum AGAP2-AS1 predicts poor response to trastuzumab treatment in breast cancer patients. In conclusion, MSC culture-induced AGAP2-AS1 caused stemness and trastuzumab resistance via promoting CPT1 expression and inducing FAO. Our results provide new insight of the role of MSCs in trastuzumab resistance and AGAP2-AS1 could be promising predictive biomarker and therapeutic target for HER-2+ breast cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSC induced stemness and trastuzumab resistance in BC cells.
Fig. 2: MSCs regulates trastuzumab resistance via upregulation of AGAP2-AS1 expression.
Fig. 3: AGAP2-AS1-mediated MSC-induced stemness and trastuzumab resistance via regulating FAO.
Fig. 4: AGAP2-AS1 is associated with HuR protein.
Fig. 5: AGAP2-AS1–HuR complex promotes the stability of CPT1 mRNA.
Fig. 6: AGAP2-AS1 sponges miR-15a-5p and releasing CPT1 expression.
Fig. 7: AGAP2-AS1 facilitate stemness and trastuzumab resistance in vivo.
Fig. 8: Serum AGAP2-AS1 predicts response to trastuzumab treatment of BC patients.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Boero S, Morabito A, Banelli B, Cardinali B, Dozin B, Lunardi G, et al. Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of FcgammaRIIIA/FcgammaRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. J Transl Med. 2015;13:324.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li N, Deng Y, Zhou L, Tian T, Yang S, Wu Y, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the Global Burden of Disease Study 2017. J Hematol Oncol. 2019;12:140.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bighin C, Pronzato P, Del Mastro L. Trastuzumab emtansine in the treatment of HER-2-positive metastatic breast cancer patients. Future Oncol. 2013;9:955–7.

    Article  CAS  PubMed  Google Scholar 

  4. Amadori D, Milandri C, Comella G, Saracchini S, Salvagni S, Barone C, et al. A phase I/II trial of non-pegylated liposomal doxorubicin, docetaxel and trastuzumab as first-line treatment in HER-2-positive locally advanced or metastatic breast cancer. Eur J Cancer. 2011;47:2091–8.

    Article  CAS  PubMed  Google Scholar 

  5. Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2:120066.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choi HJ, Jhe YL, Kim J, Lim JY, Lee JE, Shin MK, et al. FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 2020;36:101589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di C, Zhao Y. Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Exp Therap Med. 2015;9:289–93.

    Article  CAS  Google Scholar 

  8. Liu Z, Zhang W, Phillips JB, Arora R, McClellan S, Li J, et al. Immunoregulatory protein B7-H3 regulates cancer stem cell enrichment and drug resistance through MVP-mediated MEK activation. Oncogene. 2019;38:88–102.

    Article  PubMed  Google Scholar 

  9. Rahman M, Hasan MR. Cancer metabolism and drug resistance. Metabolites. 2015;5:571–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herrera-Solorio AM, Armas-Lopez L, Arrieta O, Zuniga J, Pina-Sanchez P, Avila-Moreno F. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenet. 2017;9:98.

    Article  Google Scholar 

  13. Tian T, Wang M, Lin S, Guo Y, Dai Z, Liu K, et al. The Impact of lncRNA dysregulation on clinicopathology and survival of breast cancer: a systematic review and meta-analysis. Molecular therapy. Mol Ther Nucleic Acids. 2018;12:359–69.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Qian J, Li J, Zhu C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med. 2019;18:435–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arshi A, Sharifi FS, Khorramian Ghahfarokhi M, Faghih Z, Doosti A, Ostovari S, et al. Expression analysis of MALAT1, GAS5, SRA, and NEAT1 lncRNAs in breast cancer tissues from young women and women over 45 years of age. Mol Ther Nucleic Acids. 2018;12:751–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhu HY, Bai WD, Ye XM, Yang AG, Jia LT. Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1. Biochem Biophys Res Commun. 2018;496:1308–13.

    Article  CAS  PubMed  Google Scholar 

  17. Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6:11652–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han M, Gu Y, Lu P, Li J, Cao H, Li X, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer. 2020;19:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer. 2017;3:506–28.

    Article  CAS  PubMed  Google Scholar 

  20. Bai Y, Long J, Liu Z, Lin J, Huang H, Wang D, et al. Comprehensive analysis of a ceRNA network reveals potential prognostic cytoplasmic lncRNAs involved in HCC progression. J Cell Physiol. 2019;234:18837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–e152.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dong H, Wang W, Mo S, Chen R, Zou K, Han J, et al. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res. 2018;37:202.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6:26.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bakheet T, Hitti E, Al-Saif M, Moghrabi WN, Khabar KSA. The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Biochim Biophys Acta Gene Regul Mech. 2018;1861:167–77.

    Article  CAS  PubMed  Google Scholar 

  25. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  26. Freudenberg JA, Wang Q, Katsumata M, Drebin J, Nagatomo I, Greene MI. The role of HER2 in early breast cancer metastasis and the origins of resistance to HER2-targeted therapies. Exp Mol Pathol. 2009;87:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang P, Li F, Li L, You Y, Luo S, Dong Z, et al. lncRNA profile study reveals the mRNAs and lncRNAs associated with docetaxel resistance in breast cancer cells. Sci Rep. 2018;8:17970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez EA, de Haas SL, Eiermann W, Barrios CH, Toi M, Im YH, et al. Relationship between tumor biomarkers and efficacy in MARIANNE, a phase III study of trastuzumab emtansine +/- pertuzumab versus trastuzumab plus taxane in HER2-positive advanced breast cancer. BMC Cancer. 2019;19:517.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shetty P, Patil VS, Mohan R, D’Souza L C, Bargale A, Patil BR, et al. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer. Ann Clin Biochem. 2017;54:463–71.

    Article  CAS  PubMed  Google Scholar 

  32. Montemurro F, Prat A, Rossi V, Valabrega G, Sperinde J, Peraldo-Neia C. et al. Potential biomarkers of long-term benefit from single-agent trastuzumab or lapatinib in HER2-positive metastatic breast cancer. Mol Oncol. 2014;8:20–6.

    Article  CAS  PubMed  Google Scholar 

  33. Ponde N, Bradbury I, Lambertini M, Ewer M, Campbell C, Ameels H, et al. Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: a NeoALTTO sub-study (BIG 1-06). Breast Cancer Res Treat. 2018;168:631–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC, et al. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell. 2014;15:762–74.

    Article  CAS  PubMed  Google Scholar 

  35. Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41:731–8.

    Article  PubMed  Google Scholar 

  36. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 2011;1807:726–34.

    Article  CAS  PubMed  Google Scholar 

  37. Ghoveud E, Teimuri S, Vatandoost J, Hosseini A, Ghaedi K, Etemadifar M, et al. Potential biomarker and therapeutic LncRNAs in multiple sclerosis through targeting memory B cells. Neuromol Med. 2020;22:111–20.

    Article  CAS  Google Scholar 

  38. Storti CB, de Oliveira RA, de Carvalho M, Hasimoto EN, Cataneo DC, Cataneo AJM, et al. Telomere-associated genes and telomeric lncRNAs are biomarker candidates in lung squamous cell carcinoma (LUSC). Exp Mol Pathol. 2020;112:104354.

    Article  CAS  PubMed  Google Scholar 

  39. Kang M, Ren M, Li Y, Fu Y, Deng M, Li C. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 2018;37:171.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang W, Cai X, Yu J, Lu X, Qian Q, Qian W. Exosome-mediated transfer of lncRNA RP11838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int J Oncol. 2018;53:527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Song X, Zhang X, Wang X, Chen L, Jiang L, Zheng A, et al. LncRNA SPRY4-IT1 regulates breast cancer cell stemness through competitively binding miR-6882-3p with TCF7L2. J Cell Mol Med. 2020;24:772–84.

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Tao H, Wang C, Chen W, Hua F, Qian H. lncRNA-ATB promotes stemness maintenance in colorectal cancer by regulating transcriptional activity of the beta-catenin pathway. Exp Ther Med. 2020;19:3097–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Wang Y, Wang L, Yao B, Sun L, Liu R, et al. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J Exp Clin cancer Res. 2019;38:194.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, et al. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 2019;10:207.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang J, Kong L, Guo S, Bu M, Guo Q, Xiong Y, et al. hnRNPs and ELAVL1 cooperate with uORFs to inhibit protein translation. Nucleic Acids Res. 2017;45:2849–64.

    CAS  PubMed  Google Scholar 

  46. Luo N, Zhang K, Li X, Hu Y. ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem. 2020;121:4176–87.

    Article  CAS  PubMed  Google Scholar 

  47. Chen R, Zhang X, Wang C. LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem. 2019;121:4043–51.

    Article  PubMed  Google Scholar 

  48. Qian C, Li H, Chang D, Wei B, Wang Y. Identification of functional lncRNAs in atrial fibrillation by integrative analysis of the lncRNA-mRNA network based on competing endogenous RNAs hypothesis. J Cell Physiol. 2019;234:11620–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Manran Liu, The Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China, for critical technical support.

Funding

This study is supported by National Natural Science Foundation of China (81960475, 82072932) and The “Nanhai series” talent cultivation program of Hainan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaying Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was approved by Research Scientific Ethics Committee of The First Affiliated Hospital of Zhengzhou University, The First People’s Hospital of Chenzhou City and Hainan General Hospital. All participants signed informed consent prior to using the tissues and serum samples for scientific research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41388-023-02774-8"

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Qu, H., Han, M. et al. RETRACTED ARTICLE: MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene 40, 833–847 (2021). https://doi.org/10.1038/s41388-020-01574-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01574-8

This article is cited by

Search

Quick links