Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regucalcin promotes dormancy of prostate cancer

Abstract

Prostate cancer is one of the leading causes of mortality in men. The major cause of death in prostate cancer patients can be attributed to metastatic spread of disease or tumor recurrence after initial treatment. Prostate tumors are known to remain undetected or dormant for a long period of time before they progress locoregionally or at distant sites as overt tumors. However, the molecular mechanism of dormancy is yet poorly understood. In this study, we performed a differential gene expression analysis and identified a gene, Regucalcin (RGN), which promotes dormancy of prostate cancer. We found that cancer patients expressing higher level of RGN showed significantly longer recurrence-free and overall- survival. Using a doxycycline-inducible RGN expression system, we showed that ectopic expression of RGN in prostate tumor cells induced dormancy in vivo, while following suppression of RGN triggered recurrence of tumor growth. On the other hand, silencing RGN in LNCap cells promoted its outgrowth in the tibia of mice. Importantly, RGN promoted multiple known hallmarks of tumor dormancy including activation of p38 MAPK, decrease in Erk signaling and inhibition of FOXM1 expression. Furthermore, we found that RGN significantly suppressed angiogenesis by increasing secretory miR-23c level in the exosomes. Intriguingly, FOXM1 was found to negatively regulate miR-23c expression in prostate cancer. In addition, we identified 11 RGN downstream target genes that independently predicted longer recurrence-free survival in patients. We found that expression of these genes was regulated by FOXM1 and/or p38 MAPK. These findings suggest a critical role of RGN in prostate cancer dormancy, and the utility of RGN signaling and exosomal miR-23c as biomarkers for predicting recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RGN expression correlates with late recurrence in patients.
Fig. 2: RGN promotes dormancy in vivo.
Fig. 3: RGN promotes dormancy in vitro.
Fig. 4: RGN promotes dormancy signaling.
Fig. 5: RGN expression enhances expression of cytoskeletal genes via p38 and FOXM1 signaling.
Fig. 6: RGN suppresses angiogenesis in the tumor microenvironment by exosomal miR-23c.
Fig. 7: The proposed mechanism of action of RGN in inducing prostate cancer dormancy.

Similar content being viewed by others

References

  1. Boorjian SA, Thompson RH, Tollefson MK, Rangel LJ, Bergstralh EJ, Blute ML, et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol. 2011;59:893–9.

    Article  PubMed  Google Scholar 

  2. Kupelian P, Katcher J, Levin H, Zippe C, Klein E. Correlation of clinical and pathologic factors with rising prostate-specific antigen profiles after radical prostatectomy alone for clinically localized prostate cancer. Urology. 1996;48:249–60.

    Article  CAS  PubMed  Google Scholar 

  3. Morgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ, Gallaher IS, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clinical cancer research: an official journal of the American Association for. Cancer Res. 2009;15:677–83.

    CAS  Google Scholar 

  4. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol. 2000;31:578–83.

    Article  CAS  PubMed  Google Scholar 

  5. Cackowski FC, Wang Y, Decker JT, Sifuentes C, Weindorf S, Jung Y, et al. Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer. Prostate. 2019;79:1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma S, Watabe K. Biomarkers and mechanisms associated with recurrent prostate cancer. Front Biosci. 2014;19:339–51.

    Article  CAS  Google Scholar 

  7. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7:834–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamaguchi M. Role of regucalcin in maintaining cell homeostasis and function (review). Int J Mol Med. 2005;15:371–89.

    CAS  PubMed  Google Scholar 

  9. Marques R, Maia CJ, Vaz C, Correia S, Socorro S. The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cell Mol Life Sci. 2014;71:93–111.

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi M. The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis. 2013;18:1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marques R, Vaz CV, Maia CJ, Gomes M, Gama A, Alves G, et al. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis. Exp Cell Res. 2015;330:325–35.

    Article  CAS  PubMed  Google Scholar 

  12. Vaz CV, Correia S, Cardoso HJ, Figueira MI, Marques R, Maia CJ, et al. The emerging role of regucalcin as a tumor suppressor: facts and views. Curr Mol Med. 2016;16:607–19.

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi M, Osuka S, Weitzmann MN, El-Rayes BF, Shoji M, Murata T. Prolonged survival in pancreatic cancer patients with increased regucalcin gene expression: Overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro. Int J Oncol. 2016;48:1955–64.

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi M, Osuka S, Weitzmann MN, Shoji M, Murata T. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int J Oncol. 2016;49:812–22.

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi M, Osuka S, Shoji M, Weitzmann MN, Murata T. Survival of lung cancer patients is prolonged with higher regucalcin gene expression: suppressed proliferation of lung adenocarcinoma A549 cells in vitro. Mol Cell Biochem. 2017;430:37–46.

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi M, Osuka S, Murata T. Prolonged survival of patients with colorectal cancer is associated with a higher regucalcin gene expression: Overexpression of regucalcin suppresses the growth of human colorectal carcinoma cells in vitro. Int J Oncol. 2018;53:1313–22.

    CAS  PubMed  Google Scholar 

  17. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208:2641–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A, et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell. 2011;20:173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995;268:884–6.

    Article  CAS  PubMed  Google Scholar 

  20. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA. 2002;99:2884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyu T, Jia N, Wang J, Yan X, Yu Y, Lu Z, et al. Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics. 2013;8:1330–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, et al. Secreted Protein Acidic and Rich in Cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J Biol Chem. 2016;291:19351–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Hua L, Guo M, Yang L, Liu X, Li Y, et al. Notable roles of EZH2 and DNMT1 in epigenetic dormancy of the SHP1 gene during the progression of chronic myeloid leukaemia. Oncol Lett. 2017;13:4979–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate. 2002;52:20–33.

    Article  PubMed  Google Scholar 

  25. Huang W, Fridman Y, Bonfil RD, Ustach CV, Conley-LaComb MK, Wiesner C, et al. A novel function for platelet-derived growth factor D: induction of osteoclastic differentiation for intraosseous tumor growth. Oncogene. 2012;31:4527–35.

    Article  CAS  PubMed  Google Scholar 

  26. Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell. 2014;25:638–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sosa MS, Avivar-Valderas A, Bragado P, Wen HC, Aguirre-Ghiso JA. ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clinical cancer research: an official journal of the American Association for. Cancer Res. 2011;17:5850–7.

    CAS  Google Scholar 

  28. Ayala G, Tuxhorn JA, Wheeler TM, Frolov A, Scardino PT, Ohori M, et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res. 2003;9:4792–801.

    CAS  PubMed  Google Scholar 

  29. Tanjore H, Kalluri R. The role of type IV collagen and basement membranes in cancer progression and metastasis. Am J Pathol. 2006;168:715–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Z, Peng YC, Gopalan A, Gao D, Chen Y, Joyner AL. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaked Y, McAllister S, Fainaru O, Almog N. Tumor dormancy and the angiogenic switch: possible implications of bone marrow-derived cells. Curr Pharm Des. 2014;20:4920–33.

    Article  CAS  PubMed  Google Scholar 

  32. Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, et al. Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019;234:16885–903.

    Article  CAS  PubMed  Google Scholar 

  33. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sharma S, Wu SY, Jimenez H, Xing F, Zhu D, Liu Y, et al. Ca(2+) and CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine. 2019;44:194–208.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta Rev Cancer. 2017;1868:538–63.

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi M. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy. J Cancer Res Clin Oncol. 2015;141:1333–41.

    Article  CAS  PubMed  Google Scholar 

  37. Ishigami A, Masutomi H, Handa S, Maruyama N. Age-associated decrease of senescence marker protein-30/gluconolactonase in individual mouse liver cells: immunohistochemistry and immunofluorescence. Geriatr Gerontol Int. 2015;15:804–10.

    Article  PubMed  Google Scholar 

  38. Vaz CV, Marques R, Maia CJ, Socorro S. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin. Transl Res. 2015;166:693–705.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa T, Yamaguchi M. Nuclear localization of regucalcin is enhanced in culture with protein kinase C activation in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med. 2008;21:605–10.

    CAS  PubMed  Google Scholar 

  40. Vaz CV, Rodrigues DB, Socorro S, Maia CJ. Effect of extracellular calcium on regucalcin expression and cell viability in neoplastic and non-neoplastic human prostate cells. Biochim Biophys Acta. 2015;1853:2621–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi M, Mori S. Inhibitory effect of calcium-binding protein regucalcin on protein kinase C activity in rat liver cytosol. Biochem Med Metab Biol. 1990;43:140–6.

    Article  CAS  PubMed  Google Scholar 

  42. Maia CJ, Santos CR, Schmitt F, Socorro S. Regucalcin is expressed in rat mammary gland and prostate and down-regulated by 17beta-estradiol. Mol Cell Biochem. 2008;311:81–6.

    Article  CAS  PubMed  Google Scholar 

  43. Chery L, Lam HM, Coleman I, Lakely B, Coleman R, Larson S, et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget. 2014;5:9939–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eckers JC, Kalen AL, Sarsour EH, Tompkins VS, Janz S, Son JM, et al. Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells. Radiat Res. 2014;182:420–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel). 2017;9:34.

    Article  CAS  Google Scholar 

  46. Jones CU, Hunt D, McGowan DG, Amin MB, Chetner MP, Bruner DW, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl J Med. 2011;365:107–18.

    Article  CAS  PubMed  Google Scholar 

  47. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maia C, Santos C, Schmitt F, Socorro S. Regucalcin is under-expressed in human breast and prostate cancers: effect of sex steroid hormones. J Cell Biochem. 2009;107:667–76.

    Article  CAS  PubMed  Google Scholar 

  49. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ribeiro MF, Zhu H, Millard RW, Fan GC. Exosomes function in pro- and anti-angiogenesis. Curr Angiogenes. 2013;2:54–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Amin KN, Umapathy D, Anandharaj A, Ravichandran J, Sasikumar CS, Chandra SKR, et al. miR-23c regulates wound healing by targeting stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) among patients with diabetic foot ulcer. Microvasc Res. 2020;127:103924.

    Article  CAS  PubMed  Google Scholar 

  52. Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang YQ, Han ZD, Liang YX, Lin ZY, Ling XH, Fu X, et al. Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer. Med Oncol. 2014;31:820.

    Article  PubMed  CAS  Google Scholar 

  54. Varisli L. Identification of new genes downregulated in prostate cancer and investigation of their effects on prognosis. Genet Test Mol Biomark. 2013;17:562–6.

    Article  CAS  Google Scholar 

  55. Henderson JR, Macalma T, Brown D, Richardson JA, Olson EN, Beckerle MC. The LIM protein, CRP1, is a smooth muscle marker. Dev Dyn. 1999;214:229–38.

    Article  CAS  PubMed  Google Scholar 

  56. Long X, Tharp DL, Georger MA, Slivano OJ, Lee MY, Wamhoff BR, et al. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin. J Biol Chem. 2009;284:33671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G, et al. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol. 1991;11:3296–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res. 2004;301:1–7.

    Article  CAS  PubMed  Google Scholar 

  59. Chand V, Pandey A, Kopanja D, Guzman G, Raychaudhuri P. Opposing roles of the forkhead box factors FoxM1 and FoxA2 in liver cancer. Mol Cancer Res. 2019;17:1063–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 2018;78:4316–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005;8:393–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant RO1CA173499, RO1CA185650, and RO1CA205067 to KW. XP was supported by State Scholarship fund (2014084100701) by China Scholarship Council. FL was supported by State Scholarship fund 2018093 by China Scholarship Council. The tumor tissue and pathology shared resources, biostatistics/bioinformatics shared resources, flow cytometry, and cell engineering shared resources are supported by comprehensive cancer center of Wake Forest University and, National Institutes of Health Grant (P30CA012197). The funding agency had no role in study design, data collection, data analysis, interpretation, and writing of the report. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

SS conducted most of the experiments, analyzed the results, and wrote most of the manuscript. XP assisted with cell proliferation assay and qRT-PCR. FX and S-YW assisted with intracardiac injections and IVIS imaging. KW and FL assisted with the bioinformatics analysis. AT, DZ, MR, and RD prepared conditioned medium and isolated exosomes. RS performed nanoparticle tracking analysis. KW conceived the idea for the project and contributed to editing of the manuscript.

Corresponding author

Correspondence to Kounosuke Watabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Pei, X., Xing, F. et al. Regucalcin promotes dormancy of prostate cancer. Oncogene 40, 1012–1026 (2021). https://doi.org/10.1038/s41388-020-01565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01565-9

This article is cited by

Search

Quick links