Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition

Abstract

Ribonucleotide reductase (RNR) catalyzes the rate-limiting step of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) building blocks for DNA synthesis, and is a well-recognized target for cancer therapy. RNR is a heterotetramer consisting of two large RRM1 subunits and two small RRM2 subunits. RNR activity is greatly stimulated by transcriptional activation of RRM2 during S/G2 phase to ensure adequate dNTP supply for DNA replication. However, little is known about the cell-cycle-dependent regulation of RNR activity through RRM1. Here, we report that RRM1 is phosphorylated at Ser 559 by CDK2/cyclin A during S/G2 phase. And this S559 phosphorylation of RRM1enhances RNR enzymatic activity and is required for maintaining sufficient dNTPs during normal DNA replication. Defective RRM1 S559 phosphorylation causes DNA replication stress, double-strand break, and genomic instability. Moreover, combined targeting of RRM1 S559 phosphorylation and ATR triggers lethal replication stress and profound antitumor effects. Thus, this posttranslational phosphorylation of RRM1 provides an alternative mechanism to finely regulating RNR and therapeutic opportunities for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RRM1 is phosphorylated at ser/thr residues during S and early G2 phase of the cell-cycle.
Fig. 2: RRM1 is phosphorylated at serine 559 by CDK2/cyclin A.
Fig. 3: S559 phosphorylation of RRM1 stimulates RNR enzymatic activity.
Fig. 4: Defective RRM1 phosphorylation on S559 induces DNA replication stress.
Fig. 5: S559 phosphorylation of RRM1 is required to maintain genome stability.
Fig. 6: Inhibition of CDK2-RRM1 phosphorylation sensitizes human lung cancer cells to ATR inhibitor VE822.
Fig. 7: A schematic illustration of the role of RRM1 phosphorylation in DNA replication stress.

Similar content being viewed by others

References

  1. Chen Z, Odstrcil EA, Tu BP, McKnight SL. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science. 2007;316:1916–9.

    CAS  PubMed  Google Scholar 

  2. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.

    PubMed  Google Scholar 

  3. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.

    CAS  PubMed  Google Scholar 

  4. Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S Phase. Mol Cell. 2015;59:1011–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Flynn RL, Zou L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci. 2011;36:133–40.

    CAS  PubMed  Google Scholar 

  6. Lin YF, Shih HY, Shang ZF, Kuo CT, Guo J, Du C, et al. PIDD mediates the association of DNA-PKcs and ATR at stalled replication forks to facilitate the ATR signaling pathway. Nucleic Acids Res. 2018;46:1847–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mailand N, Diffley JF. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell. 2005;122:915–26.

    CAS  PubMed  Google Scholar 

  8. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445:328–32.

    CAS  PubMed  Google Scholar 

  9. Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell. 2002;9:233–40.

    CAS  PubMed  Google Scholar 

  10. Sorensen CS, Syljuasen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 2012;40:477–86.

    CAS  PubMed  Google Scholar 

  11. Buckland RJ, Watt DL, Chittoor B, Nilsson AK, Kunkel TA, Chabes A. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. PLoS Genet. 2014;10:e1004846.

    PubMed  PubMed Central  Google Scholar 

  12. Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, et al. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res. 2019;47:237–52.

    CAS  PubMed  Google Scholar 

  13. Hakansson P, Hofer A, Thelander L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem. 2006;281:7834–41.

    CAS  PubMed  Google Scholar 

  14. Zhou B, Su L, Hu S, Hu W, Yip ML, Wu J, et al. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance. Cancer Res. 2013;73:6484–93.

    CAS  PubMed  Google Scholar 

  15. Rozman Grinberg I, Lundin D, Hasan M, Crona M, Jonna VR, Loderer C, et al. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. Elife. 2018;7:e31529.

    PubMed  PubMed Central  Google Scholar 

  16. Rozman Grinberg I, Lundin D, Sahlin M, Crona M, Berggren G, Hofer A, et al. A glutaredoxin domain fused to the radical-generating subunit of ribonucleotide reductase (RNR) functions as an efficient RNR reductant. J Biol Chem. 2018;293:15889–15900.

    PubMed  PubMed Central  Google Scholar 

  17. D’Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell. 2012;149:1023–34.

    PubMed  PubMed Central  Google Scholar 

  18. Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci USA. 2012;109:13302–7.

    CAS  PubMed  Google Scholar 

  19. Logan DT. Closing the circle on ribonucleotide reductases. Nat Struct Mol Biol. 2011;18:251–3.

    CAS  PubMed  Google Scholar 

  20. Zimanyi CM, Chen PY, Kang G, Funk MA, Drennan CL. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. Elife. 2016;5:e07141.

    PubMed  PubMed Central  Google Scholar 

  21. Chung G, Rose AM, Petalcorin MI, Martin JS, Kessler Z, Sanchez-Pulido L, et al. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes Dev. 2015;29:1969–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 2014;508:541–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sopko R, Foos M, Vinayagam A, Zhai B, Binari R, Hu Y, et al. Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos. Dev Cell. 2014;31:114–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Arnaoutov A, Dasso M. Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes. Science. 2014;345:1512–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vassin VM, Anantha RW, Sokolova E, Kanner S, Borowiec JA. Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci. 2009;122:4070–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Minocherhomji S, Ying S, Bjerregaard VA, Bursomanno S, Aleliunaite A, Wu W, et al. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528:286–90.

    CAS  PubMed  Google Scholar 

  27. Ma K, Qiu L, Mrasek K, Zhang J, Liehr T, Quintana LG, et al. Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci. 2012;13:11974–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Le TM, Poddar S, Capri JR, Abt ER, Kim W, Wei L, et al. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways. Nat Commun. 2017;8:241.

    PubMed  PubMed Central  Google Scholar 

  29. Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep. 2013;3:1036–43.

    CAS  PubMed  Google Scholar 

  30. Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem. 2015;290:26352–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, et al. CyclinA2-Cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem. 2015;290:13279–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chabes A, Domkin V, Thelander L. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem. 1999;274:36679–83.

    CAS  PubMed  Google Scholar 

  33. Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 2001;20:3544–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao X, Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA. 2002;99:3746–51.

    CAS  PubMed  Google Scholar 

  35. Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, et al. ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage. Proc Natl Acad Sci USA. 2008;105:18519–24.

    CAS  PubMed  Google Scholar 

  36. Aye Y, Li M, Long MJ, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene. 2015;34:2011–21.

    CAS  PubMed  Google Scholar 

  37. Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283:232–45.

    CAS  PubMed  Google Scholar 

  38. Zhu Y, Alvarez C, Doll R, Kurata H, Schebye XM, Parry D, et al. Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol. 2004;24:6268–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res. 2011;17:2799–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuli R, Shiao SL, Nissen N, Tighiouart M, Kim S, Osipov A, et al. A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine. 2019;40:375–81.

    PubMed  PubMed Central  Google Scholar 

  41. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23:4602–8.

    PubMed  Google Scholar 

  42. Schwab RA, Niedzwiedz W. Visualization of DNA replication in the vertebrate model system DT40 using the DNA fiber technique. J Vis Exp. 2011: e3255.

  43. Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol. 1998;140:1285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010;29:806–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie M, Yen Y, Owonikoko TK, Ramalingam SS, Khuri FR, Curran WJ, et al. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase. Cancer Res. 2014;74:212–23.

    CAS  PubMed  Google Scholar 

  46. Chen G, Deng X. Cell synchronization by double thymidine block. Bio Protoc. 2018;8:e2994.

    PubMed  PubMed Central  Google Scholar 

  47. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stephanie Jamison for the English editing.

Funding

This work was supported by Natural Science Foundation of Guangdong Province of China (2019A1515011247 to GC), Guangzhou Municipal Science and Technology Program of China (202002030451 to GC), Fundamental Research Funds for the Central Universities (21620421 to GC) and National Natural Science Foundation of China (81472793 and 81672895 to DW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Z., Li, Z., Huang, H. et al. Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene 39, 5721–5733 (2020). https://doi.org/10.1038/s41388-020-01403-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01403-y

This article is cited by

Search

Quick links