Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OCT4B mediates hypoxia-induced cancer dissemination

Abstract

Hypoxia, the reduction of oxygen levels in cells or tissues, elicits a set of genes to adjust physiological and pathological demands during normal development and cancer progression. OCT4, a homeobox transcription factor, is essential for self-renewal of embryonic stem cells, but little is known about the role of OCT4 in non-germ-cell tumorigenesis. Here, we report that hypoxia stimulates a short isoform of OCT4, called OCT4B, via a HIF2α-dependent pathway to induce the epithelial–mesenchymal transition (EMT) and facilitate cancer dissemination. OCT4B overexpression decreased epithelial barrier properties, which led to an increase in cell migration and invasion in lung cancer cells. OCT4B knockdown attenuated HIF2α-induced EMT and inhibited cancer dissemination in cell-line and animal models. We observed that OCT4B bound the SLUG promoter and enhanced its expression, and SLUG silencing inhibited OCT4B-mediated EMT, accompanied with decreased cell migration and invasion. Correlation analysis revealed that OCT4B expression was significantly associated with the SLUG level in lung tumors. These results provide novel insights into OCT4B-mediated oncogenesis in cancer dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastas Rev. 2010;29:351–78.

    Article  CAS  Google Scholar 

  2. Crino L, Weder W, van Meerbeeck J, Felip E, Group EGW. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v103–115.

    Article  Google Scholar 

  3. Bollineni VR, Wiegman EM, Pruim J, Groen HJ, Langendijk JA. Hypoxia imaging using Positron Emission Tomography in non-small cell lung cancer: implications for radiotherapy. Cancer Treat Rev. 2012;38:1027–32.

    Article  Google Scholar 

  4. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    Article  CAS  Google Scholar 

  5. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17:271–3.

    Article  CAS  Google Scholar 

  6. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–74.

    Article  CAS  Google Scholar 

  7. Boiani M, Eckardt S, Scholer HR, McLaughlin KJ. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 2002;16:1209–19.

    Article  CAS  Google Scholar 

  8. Pan GJ, Chang ZY, Scholer HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002;12:321–9.

    Article  Google Scholar 

  9. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557–70.

    Article  CAS  Google Scholar 

  10. Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem. 2006;281:33554–65.

    Article  CAS  Google Scholar 

  11. Wang X, Zhao Y, Xiao Z, Chen B, Wei Z, Wang B, et al. Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells. 2009;27:1265–75.

    Article  CAS  Google Scholar 

  12. Gao Y, Wei J, Han J, Wang X, Su G, Zhao Y, et al. The novel function of OCT4B isoform-265 in genotoxic stress. Stem Cells. 2012;30:665–72.

    Article  CAS  Google Scholar 

  13. Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 2011;11:714–23.

    Article  CAS  Google Scholar 

  14. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:201–12.

    Article  Google Scholar 

  15. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res. 2005;11:8070–8.

    Article  CAS  Google Scholar 

  16. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116:499–511.

    Article  CAS  Google Scholar 

  17. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R Jr., Badve S, et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer. 2010;10:411.

    Article  CAS  Google Scholar 

  18. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999;13:64–75.

    Article  CAS  Google Scholar 

  19. Papamichos SI, Lambropoulos AF, Kotoula V. OCT4B expression in PBMNCs suggests the existence of an alternative OCT4 promoter. Genes Chromosomes Cancer. 2009;48:1112–4.

    Article  CAS  Google Scholar 

  20. Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7:51–63.

    Article  CAS  Google Scholar 

  21. Keese CR, Bhawe K, Wegener J, Giaever I. Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques. 2002;33:842–4. 846, 848–50

    Article  CAS  Google Scholar 

  22. Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 2011;32:1299–304.

    Article  CAS  Google Scholar 

  23. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–17.

    Article  CAS  Google Scholar 

  24. Koh MY, Lemos R Jr., Liu X, Powis G. The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 2011;71:4015–27.

    Article  CAS  Google Scholar 

  25. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012;31:4898–911.

    Article  CAS  Google Scholar 

  26. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70:10433–44.

    Article  CAS  Google Scholar 

  27. Beltran AS, Rivenbark AG, Richardson BT, Yuan X, Quian H, Hunt JP, et al. Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor. Breast Cancer Res. 2011;13:R94.

    Article  CAS  Google Scholar 

  28. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE. 2008;3:e2637.

    Article  Google Scholar 

  29. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16:1151–62.

    Article  CAS  Google Scholar 

  30. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA, et al. HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.

    Article  CAS  Google Scholar 

  31. Karoubi G, Gugger M, Schmid R, Dutly A. OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interact Cardiovasc Thorac Surg. 2009;8:393–7.

    Article  Google Scholar 

  32. Gao Y, Wang X, Han J, Xiao Z, Chen B, Su G, et al. The novel OCT4 spliced variant OCT4B1 can generate three protein isoforms by alternative splicing into OCT4B. J Genet Genom. 2010;37:461–5.

    Article  CAS  Google Scholar 

  33. Brehm A, Ohbo K, Scholer H. The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol. 1997;17:154–62.

    Article  CAS  Google Scholar 

  34. Guo CL, Liu L, Jia YD, Zhao XY, Zhou Q, Wang L. A novel variant of Oct3/4 gene in mouse embryonic stem cells. Stem Cell Res. 2012;9:69–76.

    Article  CAS  Google Scholar 

  35. Theodorou E, Dalembert G, Heffelfinger C, White E, Weissman S, Corcoran L, et al. A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev. 2009;23:575–88.

    Article  CAS  Google Scholar 

  36. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15:501–13.

    Article  CAS  Google Scholar 

  37. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  Google Scholar 

  38. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997;17:353–60.

    Article  CAS  Google Scholar 

  39. Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, et al. CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell Death Differ. 2012;19:2015–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Tsing Hua University, National Yang-Ming University, Institute of Biomedical Science at Academia Sinica, Ministry of Science and Technology (NSC 102-2320-B-007-010, MOST104-2321-B-010-007, MOST 105–2325-B-010-003, MOST 106-2320-B-007-005-MY3), and Ministry of Health and Welfare (MOHW105-TDU-B-211–134003), Executive Yuan, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ting Chou or Cheng-Wen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SC., Chung, CH., Chung, CH. et al. OCT4B mediates hypoxia-induced cancer dissemination. Oncogene 38, 1093–1105 (2019). https://doi.org/10.1038/s41388-018-0487-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0487-6

Search

Quick links