Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival

Abstract

Trastuzumab targets the HER2 receptor on breast cancer cells to attenuate HER2-driven tumor growth. However, resistance to trastuzumab-based therapy remains a major clinical problem for women with HER2+ breast cancer. Breast cancer stem cells (BCSCs) are suggested to be responsible for drug resistance and tumor recurrence. Notch signaling has been shown to promote BCSC survival and self-renewal. Trastuzumab-resistant cells have increased Notch-1 expression. Notch signaling drives cell proliferation in vitro and is required for tumor recurrence in vivo. We demonstrate herein a mechanism by which Notch-1 is required for trastuzumab resistance by repressing PTEN expression to contribute to activation of ERK1/2 signaling. Furthermore, Notch-1-mediated inhibition of PTEN is necessary for BCSC survival in vitro and in vivo. Inhibition of MEK1/2-ERK1/2 signaling in trastuzumab-resistant breast cancer cells mimics effects of Notch-1 knockdown on bulk cell proliferation and BCSC survival. These findings suggest that Notch-1 contributes to trastuzumab resistance by repressing PTEN and this may lead to hyperactivation of ERK1/2 signaling. Furthermore, high Notch-1 and low PTEN mRNA expression may predict poorer overall survival in women with breast cancer. Notch-1 protein expression predicts poorer survival in women with HER2+ breast cancer. These results support a potential future clinical trial combining anti-Notch-1 and anti-MEK/ERK therapy for trastuzumab-resistant breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ellis MJ, Perou CM. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 2013;3:27–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wachsman W, Cann AJ, Williams JL, Slamon DJ, Souza L, Shah NP, et al. HTLV x gene mutants exhibit novel transcriptional regulatory phenotypes. Science. 1987;235:674–7.

    Article  PubMed  CAS  Google Scholar 

  3. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68.

    Article  PubMed  CAS  Google Scholar 

  4. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol. 2005;23:3676–85.

    Article  PubMed  CAS  Google Scholar 

  5. Untch M, Fasching PA, Konecny GE, Hasmuller S, Lebeau A, Kreienberg R, et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol. 2011;29:3351–7.

    Article  PubMed  CAS  Google Scholar 

  6. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    Article  PubMed  CAS  Google Scholar 

  7. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18:977–84.

    Article  PubMed  CAS  Google Scholar 

  8. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects onp27, cyclin D1, and antitumor action. Cancer Res. 2002;62:4132–41.

    PubMed  CAS  Google Scholar 

  9. Ebbesen SH, Scaltriti M, Bialucha CU, Morse N, Kastenhuber ER, Wen HY, et al. Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas. Proc Natl Acad Sci USA. 2016;113:3030–5.

    Article  PubMed  CAS  Google Scholar 

  10. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  PubMed  CAS  Google Scholar 

  11. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Loibl S, Darb-Esfahani S, Huober J, Klimowicz A, Furlanetto J, Lederer B, et al. Integrated analysis of PTEN and p4EBP1 protein expression as predictors for pCR in HER2-positive breast cancer. Clin Cancer Res. 2016;22:2675–83.

    Article  PubMed  CAS  Google Scholar 

  13. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395–402.

    Article  PubMed  CAS  Google Scholar 

  14. Stern HM, Gardner H, Burzykowski T, Elatre W, O’Brien C, Lackner MR, et al. PTEN loss is associated with worse outcome in HER2-amplified breast cancer patients but is not associated with trastuzumab resistance. Clin Cancer Res. 2015;21:2065–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 signaling network in breast cancer–like a spider in its web. J Mammary Gland Biol Neoplasia. 2014;19:253–70.

    Article  PubMed  CAS  Google Scholar 

  17. Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 2005;65:8096–8100.

    Article  PubMed  CAS  Google Scholar 

  18. Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 2006;15:2553–9.

    Article  PubMed  CAS  Google Scholar 

  19. Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer. 2009;8:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mittal S, Sharma A, Balaji SA, Gowda MC, Dighe RR, Kumar RV, et al. Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther. 2014;13:3198–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.

    Article  PubMed  CAS  Google Scholar 

  22. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117–27.

    Article  PubMed  CAS  Google Scholar 

  23. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA. 2007;104:7564–9.

    Article  PubMed  CAS  Google Scholar 

  24. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29:166–73.

    Article  CAS  Google Scholar 

  25. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286:19127–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE, et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene. 2008;27:5019–32.

    Article  PubMed  CAS  Google Scholar 

  27. Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer. 2011;105:796–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009;29:5679–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002;11:2615–24.

    Article  PubMed  CAS  Google Scholar 

  30. Kopan R. Notch signaling. Cold Spring Harbor Perspect Biol. 2012;4:a011213:1–4.

  31. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol. 2002;22:7688–7700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194:237–55.

    Article  PubMed  CAS  Google Scholar 

  33. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6:R605–615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG, et al. Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat. 2010;123:113–24.

    Article  PubMed  CAS  Google Scholar 

  35. Meurette O, Stylianou S, Rock R, Collu GM, Gilmore AP, Brennan K. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res. 2009;69:5015–22.

    Article  PubMed  CAS  Google Scholar 

  36. D’Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 2015;14:779–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70:709–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530–7.

    Article  PubMed  CAS  Google Scholar 

  39. Baker AT, Zlobin A, Osipo C. Notch-EGFR/HER2 bidirectional crosstalk in breast cancer. Front Oncol. 2014;4:360.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE, et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene. 2008;27:5019–32.

    Article  PubMed  CAS  Google Scholar 

  42. Das S, Sondarva G, Viswakarma N, Nair RS, Osipo C, Tzivion G, et al. Human epidermal growth factor receptor 2 (HER2) impedes MLK3 kinase activity to support breast cancer cell survival. J Biol Chem. 2015;290:21705–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nunes J, Zhang H, Angelopoulos N, Chhetri J, Osipo C, Grothey A, et al. ATG9A loss confers resistance to trastuzumab via c-Cbl mediated Her2 degradation. Oncotarget. 2016;7:27599–612.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pandya K, Wyatt D, Gallagher B, Shah D, Baker A, Bloodworth J, et al. PKcalpha attenuates jagged-1-mediated notch signaling in ErbB-2-positive breast cancer to reverse trastuzumab resistance. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22:175–86.

    Article  CAS  Google Scholar 

  45. Katoh M, Katoh M. Integrative genomic analyses on HES/HEY family: notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol. 2007;31:461–6.

    PubMed  CAS  Google Scholar 

  46. Chu D, Zhang Z, Zhou Y, Wang W, Li Y, Zhang H, et al. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol. 2011;22:2440–7.

    Article  PubMed  CAS  Google Scholar 

  47. Chetram MA, Hinton CV. PTEN regulation of ERK1/2 signaling in cancer. J Recept Signal Transduct Res. 2012;32:190–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Weng LP, Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet. 2001;10:605–16.

    Article  PubMed  CAS  Google Scholar 

  49. Shaw FL, Harrison H, Spence K, Ablett MP, Simoes BM, Farnie G, et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia. 2012;17:111–7.

    Article  PubMed  Google Scholar 

  50. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M, et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol. 2007;8:1071–8.

    Article  PubMed  CAS  Google Scholar 

  53. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011;305:1873–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chung JH, Ginn-Pease ME, Eng C. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res. 2005;65:4108–16.

    Article  PubMed  CAS  Google Scholar 

  55. Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK. A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene. 2007;26:3930–40.

    Article  PubMed  CAS  Google Scholar 

  56. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 2008;455:813–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Knobbe CB, Lapin V, Suzuki A, Mak TW. The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene. 2008;27:5398–415.

    Article  PubMed  CAS  Google Scholar 

  58. Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J Immunol. 2008;180:4218–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Feilotter HE, Coulon V, McVeigh JL, Boag AH, Dorion-Bonnet F, Duboue B, et al. Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma. Br J Cancer. 1999;79:718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Graziani I, Eliasz S, De Marco MA, Chen Y, Pass HI, De May RM, et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res. 2008;68:9678–85.

    Article  PubMed  CAS  Google Scholar 

  61. Yun J, Espinoza I, Pannuti A, Romero D, Martinez L, Caskey M, et al. p53 modulates notch signaling in MCF-7 breast cancer cells by associating with the notch transcriptional complex via MAML1. J Cell Physiol. 2015;230:3115–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Du C, Yi X, Liu W, Han T, Liu Z, Ding Z, et al. MTDH mediates trastuzumab resistance in HER2 positive breast cancer by decreasing PTEN expression through an NFkappaB-dependent pathway. BMC Cancer. 2014;14:869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Thery JC, Spano JP, Azria D, Raymond E, Penault Llorca F. Resistance to human epidermal growth factor receptor type 2-targeted therapies. Eur J Cancer. 2014;50:892–901.

    Article  PubMed  CAS  Google Scholar 

  64. Mao J, Song B, Shi Y, Wang B, Fan S, Yu X, et al. ShRNA targeting Notch1 sensitizes breast cancer stem cell to paclitaxel. Int J Biochem Cell Biol. 2013;45:1064–73.

    Article  PubMed  CAS  Google Scholar 

  65. Cao YW, Li WQ, Wan GX, Li YX, Du XM, Li YC, et al. Correlation and prognostic value of SIRT1 and Notch1 signaling in breast cancer. J Exp Clin Cancer Res. 2014;33:97.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lu J, Jeong HW, Kong N, Yang Y, Carroll J, Luo HR, et al. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE. 2009;4:e5577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Adachi R, Horiuchi S, Sakurazawa Y, Hasegawa T, Sato K, Sakamaki T. ErbB2 down-regulates microRNA-205 in breast cancer. Biochem Biophys Res Commun. 2011;411:804–8.

    Article  PubMed  CAS  Google Scholar 

  68. Greene SB, Gunaratne PH, Hammond SM, Rosen JM. A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci. 2010;123:606–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Baldacchino S, Saliba C, Petroni V, Fenech AG, Borg N, Grech G. Deregulation of the phosphatase, PP2A is a common event in breast cancer, predicting sensitivity to FTY720. EPMA J. 2014;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  70. McDermott MS, Browne BC, Conlon NT, O’Brien NA, Slamon DJ, Henry M, et al. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy. Mol Cancer. 2014;13:157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3:71–85.

    PubMed  PubMed Central  Google Scholar 

  72. Persson LM, Wilson AC. Wide-scale use of Notch signaling factor CSL/RBP-Jkappa in RTA-mediated activation of Kaposi’s sarcoma-associated herpesvirus lytic genes. J Virol. 2010;84:1334–47.

    Article  PubMed  CAS  Google Scholar 

  73. O’Regan RM, Cisneros A, England GM, MacGregor JI, Muenzner HD, Assikis VJ, et al. Effects of the antiestrogens tamoxifen, toremifene, and ICI 182,780 on endometrial cancer growth. J Natl Cancer Inst. 1998;90:1552–8.

    Article  PubMed  Google Scholar 

  74. Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99:616–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Cancer Society (RSG-11-181-01-TBE) awarded to Dr. Clodia Osipo, the Arthur J. Schmitt Fellowship to Dr. Andrew Baker, and in part by the Breast Cancer Research Foundation to Drs. Kathy Albain and Clodia Osipo. We thank Ianina Bognini for assistance during animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clodia Osipo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1. NICD1 Represses PTEN protein Expression

Supplementary Figure 2. Notch1 is Required for Proliferation of Trastuzumab Resistant Cells

Supplementary Figure 3. Growth Effects of distinct PTEN and Notch1 siRNAs

Supplementary Figure 4. Notch-1-mediated inhibition of PTEN has little effect on AKT phosphorylation

Supplementary Figure 5.Trastuzumab Resistant BT474 Cells Form Larger and More Mammospheres than Sensitive Cells

Supplementary Figure 6. Cancer Stem Cell Survival

Supplementary Table 1. ELDA Results

Supplementary Figure 7. Kaplan–Meier Survival Outcome Based on Notch-1 protein localization and expression

41388_2018_251_MOESM9_ESM.pptx

Supplementary Table 2. Outcome results from Notch-1 protein expression scores in 157-159 cases of HER2+ breast tumor tissue arrays from the Nottingham cohort

41388_2018_251_MOESM10_ESM.pptx

Supplementary Figure 8. Kaplan–Meier Survival Outcome Based on Notch-1 membrane-Intracellular and PTEN Protein Expression

Supplementary Figure 9. Kaplan–Meier Survival Outcome Based on Notch-1 membrane and PTEN Protein Expression

Supplementary Figure 10. Kaplan–Meier Survival Outcome Based on Notch-1 Nuclear and PTEN Protein Expression

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, A., Wyatt, D., Bocchetta, M. et al. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene 37, 4489–4504 (2018). https://doi.org/10.1038/s41388-018-0251-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0251-y

This article is cited by

Search

Quick links