Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines

Abstract

The retinoblastoma (RB) protein family includes RB1/p105, RBL1/p107, and RBL2/p130, which are key factors in cell-cycle regulation and stand at the crossroads of multiple pathways dictating cell fate decisions. The role of RB proteins in apoptosis is controversial because they can inhibit or promote apoptosis depending on the context, on the apoptotic stimuli and on their intrinsic status, impacting on the response to antitumoral treatments. Here we identified RBL2/p130 as a direct substrate of the AKT kinase, a key antiapoptotic factor hyperactive in multiple cancer types. We showed that RBL2/p130 and AKT1 physically interact and AKT phosphorylates RBL2/p130 Ser941, located in the pocket domain, but not when this residue is mutated into Ala. We found that pharmacological inhibition of AKT, through the highly selective AKT inhibitor VIII (AKTiVIII), impairs RBL2/p130 Ser941 phosphorylation and increases RBL2/p130 stability, mRNA expression and nuclear levels in both lung cancer and mesothelioma cell lines, mirroring the more extensively studied effects on the p27 cell-cycle inhibitor. Consistently, AKT inhibition reduced cell viability, induced cell accumulation in G0/G1, and triggered apoptosis, which proved to be largely dependent on RBL2/p130 itself, as shown upon RBL2/p130 silencing. AKT inhibition induced RBL2/p130-dependent apoptosis also in HEK-293 cells, in which re-expression of a short hairpin-resistant RBL2/p130 was able to rescue AKTiVIII-induced apoptosis upon RBL2/p130 silencing. Our data also showed that the combination of AKT and cyclin-dependent kinases (CDK) inhibitors, which converge on the re-activation of RBL2/p130 antitumoral potential, could be a promising anticancer strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pentimalli F, Cito L, Giordano A. Dysfunction of the RB retinoblastoma gene in cancer. In: Siddik ZH, editor. Checkpoint controls and targets in cancer therapy (cancer drug discovery and development) Humana Press; New York, NY, USA, 2009. p. 109–22.

  2. Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget. 2015;6:17873–90.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013;14:297–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Indovina P, Marcelli E, Casini N, Rizzo V, Giordano A. Emerging roles of RB family: new defense mechanisms against tumor progression. J Cell Physiol. 2013;228:525–35.

    Article  PubMed  CAS  Google Scholar 

  5. Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A. Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene. 1993;8:2561–6.

    PubMed  CAS  Google Scholar 

  6. Caputi M, Groeger AM, Esposito V, De Luca A, Masciullo V, Mancini A, et al. Loss of pRb2/p130 expression is associated with unfavorable clinical outcome in lung cancer. Clin Cancer Res. 2002;8:3850–6.

    PubMed  CAS  Google Scholar 

  7. D’Andrilli G, Masciullo V, Bagella L, Tonini T, Minimo C, Zannoni GF, et al. Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res. 2004;10:3098–103.

    Article  PubMed  Google Scholar 

  8. Masciullo V, Berardengo E, Boglione A, Sgambato A, Bernardi A, Forni M, et al. The retinoblastoma family member pRb2/p130 is an independent predictor of survival in human soft tissue sarcomas. Clin Cancer Res. 2008;14:4775–9.

    Article  PubMed  CAS  Google Scholar 

  9. Knudsen ES, Wang JY. Targeting the RB-pathway in cancer therapy. Clin Cancer Res. 2010;16:1094–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. La Sala D, Macaluso M, Trimarchi C, Giordano A, Cinti C. Triggering of p73-dependent apoptosis in osteosarcoma is under the control of E2Fs-pRb2/p130 complexes. Oncogene. 2003;22:3518–29.

    Article  PubMed  CAS  Google Scholar 

  11. Bellan C, De Falco G, Tosi GM, Lazzi S, Ferrari F, Morbini G, et al. Missing expression of pRb2/p130 in human retinoblastomas is associated with reduced apoptosis and lesser differentiation. Invest Ophthalmol Vis Sci. 2002;43:3602–8.

    PubMed  Google Scholar 

  12. Pucci B, Claudio PP, Masciullo V, Bellincampi L, Terrinoni A, Khalili K, et al. pRb2/p130 promotes radiation-induced cell death in the glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation. Oncogene. 2002;21:5897–905.

    Article  PubMed  CAS  Google Scholar 

  13. Pentimalli F, Esposito L, Forte IM, Iannuzzi CA, Rizzolio F, Tuccinardi T, et al. Abstract LB-080: reactivating RBL2/p130 oncosuppressive function as a new, possible antitumoral strategy. Cancer Res. 2015;75:LB–080.

    Article  Google Scholar 

  14. David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 2004;10:6865–71.

    Article  PubMed  CAS  Google Scholar 

  15. Qiu ZX, Zhang K, Qiu XS, Zhou M, Li WM. The prognostic value of phosphorylated AKT expression in non-small cell lung cancer: a meta-analysis. PLoS ONE. 2013;8:e81451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A, et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 2005;24:6080–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou S, Liu L, Li H, Eilers G, Kuang Y, Shi S, et al. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br J Cancer. 2014;110:2479–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell . 2007;129:1261–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.

    Article  PubMed  CAS  Google Scholar 

  20. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  PubMed  CAS  Google Scholar 

  21. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31:3635–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tsurutani J, Fukuoka J, Tsurutani H, Shih JH, Hewitt SM, Travis WD, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol. 2006;24:306–14.

    Article  PubMed  CAS  Google Scholar 

  23. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008;8:253–67.

    Article  PubMed  CAS  Google Scholar 

  24. Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002;22:2025–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang H, Zhang Y, Zhao R, Wen YY, Fournier K, Wu HB, et al. Negative cell cycle regulator 14-3-3sigma stabilizes p27 Kip1 by inhibiting the activity of PKB/Akt. Oncogene. 2006;25:4585–94.

    Article  PubMed  CAS  Google Scholar 

  26. Tedesco D, Lukas J, Reed SI. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 2002;16:2946–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bhattacharya S, Garriga J, Calbo J, Yong T, Haines DS, Grana X. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene. 2003;22:2443–51.

    Article  PubMed  CAS  Google Scholar 

  28. Indovina P, Giorgi F, Rizzo V, Khadang B, Schenone S, Di Marzo D, et al. New pyrazolo[3,4-d]pyrimidine SRC inhibitors induce apoptosis in mesothelioma cell lines through p27 nuclear stabilization. Oncogene. 2012;31:929–38.

    Article  PubMed  CAS  Google Scholar 

  29. Howard CM, Claudio PP, De Luca A, Stiegler P, Jori FP, Safdar NM, et al. Inducible pRb2/p130 expression and growth-suppressive mechanisms: evidence of a pRb2/p130, p27Kip1, and cyclin E negative feedback regulatory loop. Cancer Res. 2000;60:2737–44.

    PubMed  CAS  Google Scholar 

  30. De Falco G, Giordano A. pRb2/p130: a new candidate for retinoblastoma tumor formation. Oncogene. 2006;25:5333–40.

    Article  PubMed  CAS  Google Scholar 

  31. Simpson DS, Mason-Richie NA, Gettler CA, Wikenheiser-Brokamp KA. Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis. Cancer Res. 2009;69:8733–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, et al. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci. 2013;70:1637–51.

    Article  PubMed  CAS  Google Scholar 

  33. Jori FP, Melone MA, Napolitano MA, Cipollaro M, Cascino A, Giordano A, et al. RB and RB2/p130 genes demonstrate both specific and overlapping functions during the early steps of in vitro neural differentiation of marrow stromal stem cells. Cell Death Differ. 2005;12:65–77.

    Article  PubMed  CAS  Google Scholar 

  34. Liu P, Wang Z, Wei W. Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle. 2014;13:2162–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 2014;508:541–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cirillo D, Pentimalli F, Giordano A. Peptides or small molecules? Different approaches to develop more effective CDK inhibitors. Curr Med Chem. 2011;18:2854–66.

    Article  PubMed  CAS  Google Scholar 

  37. Abate AA, Pentimalli F, Esposito L, Giordano A. ATP-noncompetitive CDK inhibitors for cancer therapy: an overview. Expert Opin Investig Drugs. 2013;22:895–906.

    Article  PubMed  CAS  Google Scholar 

  38. Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8:547–66.

    Article  PubMed  CAS  Google Scholar 

  39. Knudsen ES, Knudsen KE. Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer. 2008;8:714–24. Englandp

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Logie L, Ruiz-Alcaraz AJ, Keane M, Woods YL, Bain J, Marquez R, et al. Characterization of a protein kinase B inhibitor in vitro and in insulin-treated liver cells. Diabetes. 2007;56:2218–27.

    Article  PubMed  CAS  Google Scholar 

  41. Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett. 2005;15:761–4.

    Article  PubMed  CAS  Google Scholar 

  42. Meuillet EJ. Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain. Curr Med Chem. 2011;18:2727–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Calleja V, Laguerre M, Parker PJ, Larijani B. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol. 2009;7:e17.

    Article  PubMed  CAS  Google Scholar 

  44. Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. De Luca A, MacLachlan TK, Bagella L, Dean C, Howard CM, Claudio PP, et al. A unique domain of pRb2/p130 acts as an inhibitor of Cdk2 kinase activity. J Biol Chem. 1997;272:20971–4.

    Article  PubMed  Google Scholar 

  46. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011;1813:1978–86.

    Article  PubMed  CAS  Google Scholar 

  47. Liu DX, Nath N, Chellappan SP, Greene LA. Regulation of neuron survival and death by p130 and associated chromatin modifiers. Genes Dev. 2005;19:719–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ho VM, Schaffer BE, Karnezis AN, Park KS, Sage J. The retinoblastoma gene Rb and its family member p130 suppress lung adenocarcinoma induced by oncogenic K-Ras. Oncogene. 2009;28:1393–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis. 2008;29:1878–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Engeland K. Cell cycle arrest through indirect transcriptional repression byp53: I have a DREAM. Cell Death Differ. 2018;25:114–32.

    Article  PubMed  CAS  Google Scholar 

  51. Chestukhin A, Litovchick L, Rudich K, DeCaprio JA. Nucleocytoplasmic shuttling of p130/RBL2: novel regulatory mechanism. Mol Cell Biol. 2002;22:453–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Litovchick L, Chestukhin A, DeCaprio JA. Glycogen synthase kinase 3 phosphorylates RBL2/p130 during quiescence. Mol Cell Biol. 2004;24:8970–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ecker K, Hengst L. Skp2: caught in the Akt. Nat Cell Biol. 2009;11:377–9. Englandp

    Article  PubMed  CAS  Google Scholar 

  54. Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013;13:585–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Helmbold H, Galderisi U, Bohn W. The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence. J Cell Physiol. 2012;227:508–13.

    Article  PubMed  CAS  Google Scholar 

  56. Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol. 2010;42:312–9.

    Article  PubMed  CAS  Google Scholar 

  57. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999;96:2110–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Rizzolio F, Lucchetti C, Caligiuri I, Marchesi I, Caputo M, Klein-Szanto AJ, et al. Retinoblastoma tumor-suppressor protein phosphorylation and inactivation depend on direct interaction with Pin1. Cell Death Differ. 2012;19:1152–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Saharia A, Guittat L, Crocker S, Lim A, Steffen M, Kulkarni S, et al. Flap endonuclease 1 contributes to telomere stability. Curr Biol. 2008;18:496–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  61. Di Marzo D, Forte IM, Indovina P, Di Gennaro E, Rizzo V, Giorgi F, et al. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma. Cell Cycle. 2014;13:652–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the AIRC- Associazione Italiana per la Ricerca sul Cancro, IG 2014-15690 to AG and by the Italian Ministry of Health. We are grateful to the Sbarro Health Research Organization (www.shro.org) for its support and for providing the custom phosphoRBL2/p130S941 antibody, and to the Commonwealth of Pennsylvania. We are grateful to our intern students Flora Magnotti, Michela Napolitano, Caterina Miro and Sonia Sodano for technical help. We are grateful to Flavio Rizzolio for sharing RBL2/p130 silencing vectors and to Enrico Bucci for helpful discussion. AG is also Director of the Cell Cycle and Cancer Research Line at CROM, Istituto Nazionale Tumori; Naples. FP is also Adjunct Associate professor at Temple University, Department of Biology, Philadelphia, PA, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca Pentimalli or Antonio Giordano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pentimalli, F., Forte, I.M., Esposito, L. et al. RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines. Oncogene 37, 3657–3671 (2018). https://doi.org/10.1038/s41388-018-0214-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0214-3

This article is cited by

Search

Quick links