Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methylphenidate undermines or enhances divergent creativity depending on baseline dopamine synthesis capacity

Abstract

Catecholamine-enhancing psychostimulants, such as methylphenidate have long been argued to undermine creative thinking. However, prior evidence for this is weak or contradictory, stemming from studies with small sample sizes that do not consider the well-established large variability in psychostimulant effects across different individuals and task demands. We aimed to definitively establish the link between psychostimulants and creative thinking by measuring effects of methylphenidate in 90 healthy participants on distinct creative tasks that measure convergent and divergent thinking, as a function of individuals’ baseline dopamine synthesis capacity, indexed with 18F-FDOPA PET imaging. In a double-blind, within-subject design, participants were administered methylphenidate, placebo or selective D2 receptor antagonist sulpiride. The results showed that striatal dopamine synthesis capacity and/or methylphenidate administration did not affect divergent and convergent thinking. However, exploratory analysis demonstrated a baseline dopamine-dependent effect of methylphenidate on a measure of response divergence, a creativity measure that measures response variability. Response divergence was reduced by methylphenidate in participants with low dopamine synthesis capacity but enhanced in those with high dopamine synthesis capacity. No evidence of any effect of sulpiride was found. These results show that methylphenidate can undermine certain forms of divergent creativity but only in individuals with low baseline dopamine levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of MPH on response divergence as a function of dopamine synthesis capacity (Ki) in the putamen.
Fig. 2: The model estimates for predictors, MPH, dopamine synthesis capacity (Ki) and an interaction of MPH and dopamine synthesis capacity for all three (striatal) models on the exploratory response divergence score of the ANT.

Similar content being viewed by others

Data availability

All task code is available at https://github.com/zceydas/VICI_Creativity; data is available upon request from the authors.

References

  1. Sahakian B, Morein-Zamir S. Professor’s little helper. Nature. 2007;450:1157–9.

    CAS  PubMed  Google Scholar 

  2. Abelman DD. Mitigating risks of students use of study drugs through understanding motivations for use and applying harm reduction theory: a literature review. Harm Reduct J. 2017;14:1–7.

    Google Scholar 

  3. Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69:e113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farah MJ, Haimm C, Sankoorikal G, Smith ME, Chatterjee A. When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology. 2009;202:541–7.

    CAS  PubMed  Google Scholar 

  5. Baas M, Boot N, van Gaal S, De Dreu CK, Cools R. Methylphenidate does not affect convergent and divergent creative processes in healthy adults. NeuroImage. 2020;205:116279.

    CAS  PubMed  Google Scholar 

  6. Hoogman M, Stolte M, Baas M, Kroesbergen E. Creativity and ADHD: A review of behavioral studies, the effect of psychostimulants and neural underpinnings. Neurosci Biobehav Rev. 2020;119:66–85.

  7. Runco MA, Jaeger GJ. The standard definition of creativity. Creativity Res J. 2012;24:92–6.

    Google Scholar 

  8. Lhommée E, Batir A, Quesada JL, Ardouin C, Fraix V, Seigneuret E, et al. Dopamine and the biology of creativity: Lessons from Parkinson’s Disease. Front Neurol. 2014;5:55.

    PubMed  PubMed Central  Google Scholar 

  9. Boot N, Baas M, Mühlfeld E, De Dreu CKW, Van Gaal S. Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation. Neuropsychologia. 2017a;104:8–17. https://doi.org/10.1016/j.neuropsychologia.2017.07.033.

    Article  PubMed  Google Scholar 

  10. Flaherty AW. Frontotemporal and dopaminergic control of idea generation and creative drive. J Comp Neurol. 2005;493:147–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Heilman KM, Nadeau SE, Beversdorf DO. Creative innovation: possible brain mechanisms. Neurocase. 2003;9:369–79.

    PubMed  Google Scholar 

  12. Ang YS, Manohar S, Plant O, Kienast A, Le Heron C, Muhammed K, et al. Dopamine modulates option generation for behavior. Curr Biol. 2018;28:1561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cools R. Chemistry of the adaptive mind: lessons from dopamine. Neuron. 2019;104:113–31.

    CAS  PubMed  Google Scholar 

  14. Dreisbach G, Goschke T. How positive affect modulates cognitive control: reduced perseveration at the cost of increased distractibility. J Exp Psychol: Learn, Mem, Cognition. 2004;30:343.

    Google Scholar 

  15. Dreisbach G, Fröber K. On how to be flexible (or not): Modulation of the stability-flexibility balance. Curr Dir Psychol Sci. 2019;28:3–9.

    Google Scholar 

  16. Robbins TW. Dopamine and cognition. Curr Opin Neurol. 2003;16:S1–S2.

    PubMed  Google Scholar 

  17. Fallon SJ, Mattiesing RM, Muhammed K, Manohar S, Husain M. Fractionating the neurocognitive mechanisms underlying working memory: Independent effects of dopamine and Parkinson’s disease. Cereb Cortex. 2017;27:5727–38.

    PubMed  PubMed Central  Google Scholar 

  18. Goldman-Rakic P. Cellular basis of working memory. Neuron. 1995;14:477–85.

    CAS  PubMed  Google Scholar 

  19. Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci. 2000;3:1184–91.

    CAS  PubMed  Google Scholar 

  20. Furman DJ, Zhang Z, Chatham CH, Good M, Badre D, Hsu M, et al. Augmenting frontal dopamine tone enhances maintenance over gating processes in working memory. J Cogn Neurosci. 2021;33:1753–65.

    PubMed  PubMed Central  Google Scholar 

  21. De Dreu CKW, Nijstad BA, Baas M, Wolsink I, Roskes M. Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Pers Soc Psychol Bull 2012;38:656–69.

    PubMed  Google Scholar 

  22. Frank MJ, Loughry B, O’Reilly RC. Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cogn, Affect, Behav Neurosci. 2001;1:137–60.

    CAS  PubMed  Google Scholar 

  23. O’Reilly RC, Frank MJ. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 2006;18:283–328.

    PubMed  Google Scholar 

  24. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology. 2007;32:180–9.

  25. Chatham CH, Badre D. Multiple gates on working memory. Curr Opin Behav Sci. 2015;1:23–31.

    PubMed  PubMed Central  Google Scholar 

  26. Zmigrod L, Robbins TW. Dopamine, cognitive flexibility, and IQ: Epistatic catechol-o-MethylTransferase: DRD2 gene–gene interactions modulate mental rigidity. J Cogn Neurosci. 2021;34:153–79.

    PubMed  Google Scholar 

  27. Spencer RC, Klein RM, Berridge CW. Psychostimulants act within the prefrontal cortex to improve cognitive function. Biol Psychiatry. 2012;72:221–7.

    CAS  PubMed  Google Scholar 

  28. Berridge CW, Spencer RC. Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Res. 2016;1641:189–96.

    CAS  PubMed  Google Scholar 

  29. Nijstad BA, De Dreu CK, Rietzschel EF, Baas M. The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. Eur Rev Soc Psychol. 2010;21:34–77.

    Google Scholar 

  30. Brinkman WB, Sherman SN, Zmitrovich AR, Visscher MO, Crosby LE, Phelan KJ, et al. In their own words: Adolescent views on ADHD and their evolving role managing medication. Acad Pediat. 2012;12:53–61.

    Google Scholar 

  31. Kovshoff H, Banaschewski T, Buitelaar JK, Carucci S, Coghill D, Danckaerts M, et al. Reports of perceived adverse events of stimulant medication on cognition, motivation, and mood: Qualitative investigation and the generation of items for the medication and cognition rating scale. J Child Adolesc Psychopharmacol. 2016;26:537–47.

    PubMed  PubMed Central  Google Scholar 

  32. Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, et al. The effects of methylphenidate on the neural signatures of sustained attention. Biol psychiatry. 2017;82:687–94.

    CAS  PubMed  Google Scholar 

  33. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord. 2002;6(1_suppl):31–43.

    Google Scholar 

  34. Arnsten AF, Wang M, Paspalas CD. Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev. 2015;67:681–96.

    PubMed  PubMed Central  Google Scholar 

  35. Mehta MA, Montgomery AJ, Kitamura Y, Grasby PM. Dopamine D2 receptor occupancy levels of acute sulpiride challenges that produce working memory and learning impairments in healthy volunteers. Psychopharmacology. 2008;196:157–65.

    CAS  PubMed  Google Scholar 

  36. Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol. 1993;60:148–64.

    CAS  PubMed  Google Scholar 

  37. Morrish PK, Sawle GV, Brooks DJ. An [18F] dopa–PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996;119:585–91.

    PubMed  Google Scholar 

  38. Rakshi J, Uema T, Ito K, Bailey D, Morrish P, Ashburner J, et al. Frontal, midbrain and striatal dopamergic function in early and advanced Parkinson’s disease. A 3D [(18)F]dopa-PET study. Brain. 1999;122:1637–50.

    PubMed  Google Scholar 

  39. Kaasinen V, Nurmi E, Bergman J, Eskola O, Solin O, Sonninen P, et al. Personality traits and brain dopaminergic function in Parkinson’s disease. Proc Natl Acad Sci. 2001;98:13272–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ. Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain. 2008;131:1294–302.

    PubMed  Google Scholar 

  41. Cools R, Miyakawa A, Sheridan M, D’Esposito M. Enhanced frontal function in Parkinson’s disease. Brain. 2010;133:225–33.

    CAS  PubMed  Google Scholar 

  42. Canesi M, Rusconi ML, Isaias IU, Pezzoli G. Artistic productivity and creative thinking in Parkinson’s disease. Eur J Neurol. 2012;19:468–72.

    CAS  PubMed  Google Scholar 

  43. Inzelberg R. The awakening of artistic creativity and Parkinson’s disease. Behav Neurosci. 2013;127:256.

    PubMed  Google Scholar 

  44. Westbrook A, Van Den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Cools R, et al. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science. 2020;367:1362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18] fluorodopa positron emission tomographic study. J Neurosci. 1998;18:5901–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Määttä JI, van den Bosch R, Papadopetraki D, Hofmans L, Lambregts B, Westbrook A, et al. Predicting effects of methylphenidate and sulpiride on brain and cognition: A pharmaco-fMRI, PET study. Des Descr. 2017. https://doi.org/10.31219/osf.io/d3h8e.

  47. Hofmans L, Papadopetraki D, van den Bosch R, Määttä JI, Froböse MI, Zandbelt B, et al. Methylphenidate boosts choices of mental labor over leisure depending on striatal dopamine synthesis capacity. Neuropsychopharmacology. 2020;45:2170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofmans L, Westbrook A, van den Bosch R, Booij J, Verkes RJ, Cools R. Effects of average reward rate on vigor as a function of individual variation in striatal dopamine. Psychopharmacology. 2022;239:465–78.

    CAS  PubMed  Google Scholar 

  49. van den Bosch R, Lambregts B, Määttä J, Hofmans L, Papadopetraki D, Westbrook A, et al. Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nat Commun. 2022;13:1–15.

    Google Scholar 

  50. Chen P, Geurts DE, Määttä JI, van den Bosch R, Hofmans L, Papadopetraki D, et al. Effect of striatal dopamine on Pavlovian bias. A large [18F]-DOPA PET study. Behav Neurosci. 2023;137:184–95.

    PubMed  Google Scholar 

  51. Mednick S. The associative basis of the creative process. Psycholog Rev. 1962;69:220.

    CAS  Google Scholar 

  52. Swanson J, Gupta S, Lam A, Shoulson I, Lerner M, Modi N, et al. Development of a new once-a-day formulation of methylphenidate for the treatment of attention-deficit/hyperactivity disorder: proof-of-concept and proof-of-product studies. Arch Gen Psych. 2003;60:204–11.

    CAS  Google Scholar 

  53. Westbrook A, Ghosh A, van den Bosch R, Määttä JI, Hofmans L, Cools R. Striatal dopamine synthesis capacity reflects smartphone social activity. Iscience. 2021;24:102497.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyes BE, Cumming P, Martin WRW, McGeer EG. Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects. Life Sci. 1986;39:2243–52.

    CAS  PubMed  Google Scholar 

  55. Hoffman JM, Melega WP, Hawk TC, Grafton SC, Luxen A, Mahoney DK, et al. The effects of carbidopa administration on 6-[18F] fluoro-L-dopa kinetics in positron emission tomography. J Nucl Med. 1992;33:1472–7.

    CAS  PubMed  Google Scholar 

  56. Ishikawa T, Dhawan V, Kazumata K, Chaly T. Comparative nigrostriatal dopaminergic imaging with iodine-123-betaCIT-FP/SPECT and fluorine-18-FDOPA/PET. J Nucl Med. 1996;37:1760.

    CAS  PubMed  Google Scholar 

  57. Léger G, Gjedde A, Kuwabara H, Guttman M, Cumming P. Effect of catechol‐O‐methyltransferase inhibition on brain uptake of [18F] fluorodopa: Implications for compartmental modelling and clinical usefulness. Synapse. 1998;30:351–61.

    PubMed  Google Scholar 

  58. Piray P, den Ouden HE, van der Schaaf ME, Toni I, Cools R. Dopaminergic modulation of the functional ventrodorsal architecture of the human striatum. Cereb Cortex. 2017;27:485–95.

    PubMed  Google Scholar 

  59. Guilford JP. The nature of human intelligence. New York, NY: McGraw-Hill 1967.

  60. Kaufman JC. Counting the muses: development of the Kaufman Domains of Creativity Scale (K-DOCS). Psychol Aesthet, Creativity, Arts. 2012;6:298.

    Google Scholar 

  61. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  62. Lee MD, Wagenmakers EJ. Bayesian cognitive modeling: A practical course. Cambridge University Press 2014.

  63. Jeffreys, H Theory of probability (3rd ed.). Oxford, England: Oxford University Press 1961.

  64. Bruce P, Bruce A. Practical Statistics for Data Scientists. O’Reilly Media (2017).

  65. Gareth J, Witten D, Hastie T Tibshirani R. An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated 2014.

  66. Gvirts HZ, Mayseless N, Segev A, Lewis DY, Feffer K, Barnea Y, et al. Novelty-seeking trait predicts the effect of methylphenidate on creativity. J Psychopharmacol. 2017;31:599–605.

    CAS  PubMed  Google Scholar 

  67. Depue RA, Collins PF. Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behav brain Sci. 1999;22:491–517.

    CAS  PubMed  Google Scholar 

  68. Ludolph AG, Kassubek J, Schmeck K, Glaser C, Wunderlich A, Buck AK, et al. Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3, 4-dihdroxy-6-[18F] fluorophenyl-l-alanine PET study. Neuroimage. 2008;41:718–27.

    PubMed  Google Scholar 

  69. Ter Huurne N, Fallon SJ, van Schouwenburg M, van der Schaaf M, Buitelaar J, Jensen O, et al. Methylphenidate alters selective attention by amplifying salience. Psychopharmacology. 2015;232:4317–23.

    PubMed  Google Scholar 

  70. Linssen AM, Sambeth A, Vuurman EF, Riedel WJ. Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. Int J Neuropsychopharmacol. 2014;17:961–77.

    CAS  PubMed  Google Scholar 

  71. Lacaux C, Izabelle C, Sanantonio G, De Villèle L, Frain J, Lubart T, et al. Increased creative thinking in narcolepsy. Brain. 2019;142:1988–99. https://doi.org/10.1093/brain/awz137.

    Article  PubMed  Google Scholar 

  72. Lacaux C, Andrillon A, Bastoul C, Idir Y, Fonteix-Galet A, Arnulf I, et al. Sleep onset is a creative sweet spot. Sci Adv. 2021;7:eabj5866. https://doi.org/10.1126/sciadv.abj5866.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jarosz AF, Colflesh GJ, Wiley J. Uncorking the muse: Alcohol intoxication facilitates creative problem solving. Conscious Cogn. 2012;21:487–93.

    PubMed  Google Scholar 

  74. Schooler JW, Smallwood J, Christoff K, Handy TC, Reichle ED, Sayette MA. Meta-awareness, perceptual decoupling and the wandering mind. Trends Cogn Sci. 2011;15:319–26.

    PubMed  Google Scholar 

  75. Ansburg PI, Hill K. Creative and analytic thinkers differ in their use of attentional resources. Personal Individ Diff. 2003;34:1141–52.

    Google Scholar 

  76. Finke RA, Ward TB, Smith SM. Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press. 1992.

  77. Martindale C. Creativity and connectionism. Creat Cogn Appr. 1995;249:268.

    Google Scholar 

  78. Scheffer M, Bascompte J, Bjordam TK, Carpenter SR, Clarke LB, Folke C, et al. Dual thinking for scientists. Ecol Soc. 2015;20.

  79. Sumuer E, Kaşıkcı DN. The role of smartphones in college students’ mind-wandering during learning. Comput Educ. 2022;190:104616.

    Google Scholar 

  80. Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test–retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage. 2010;50:524–31.

    PubMed  Google Scholar 

  81. Ito H, Kodaka F, Takahashi H, Takano H, Arakawa R, Shimada H, et al. Relation between presynaptic and postsynaptic dopaminergic functions measured by positron emission tomography: implication of dopaminergic tone. J Neurosci. 2011;31:7886–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Berry AS, Shah VD, Furman DJ, White RL III, Baker SL, O’Neil JP, et al. Dopamine synthesis capacity is associated with D2/3 receptor binding but not dopamine release. Neuropsychopharmacology. 2018;43:1201–11.

    CAS  PubMed  Google Scholar 

  83. Walker MD, Dinelle K, Kornelsen R, McCormick S, Mah C, Holden JE, et al. In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F] FDOPA PET. J Cereb Blood Flow Metab. 2013;33:59–66.

    CAS  PubMed  Google Scholar 

  84. Laruelle M, D’Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 1997;17:162–74. https://doi.org/10.1016/S0893-133X(97)00043-2.

    Article  CAS  Google Scholar 

  85. Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci. 2004;27:468–74.

    CAS  PubMed  Google Scholar 

  86. Dias R, Robbins TW, Roberts AC. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci. 1996;110:872.

    CAS  PubMed  Google Scholar 

  87. Roberts AC, Wallis JD. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex. 2000;10:252–62.

    CAS  PubMed  Google Scholar 

  88. Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbitofrontal cortex. J Neurosci 1999;20:9029–38.

    Google Scholar 

  89. Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Oyanagi C, et al. Dissociable mechanisms of attentional control within the human prefrontal cortex. Cereb Cortex. 2001;11:85–92.

    CAS  PubMed  Google Scholar 

  90. Cools R, Clark L, Robbins TW. Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J Neurosci. 2004;24:1129–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cools R. Dopaminergic modulation of cognitive function – Implication for L-DOPA therapy in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30:1–34.

    CAS  PubMed  Google Scholar 

  92. Grace AA, Moore H, O’Donnell P. The modulation of corticoaccumbens transmission by limbic afferents and dopamine: a model for the pathophysiology of schizophrenia. In Advances in pharmacology (Vol. 42, pp. 721-4). Academic Press 1997.

  93. Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psych. 2008;64:739–49.

    CAS  Google Scholar 

  94. Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature. 1995;376:572–5.

    CAS  PubMed  Google Scholar 

  95. Arnsten AF, Scahill L, Findling RL. Alpha-2 adrenergic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol. 2007;17:393–406.

    PubMed  Google Scholar 

  96. Ding YS, Fowler JS, Volkow ND, Dewey SL, Wang GJ, Logan J, et al. Chiral drugs: comparison of the pharmacokinetics of [11C] d-threo and L-threo-methylphenidate in the human and baboon brain. Psychopharmacology. 1997;131:71–8.

    CAS  PubMed  Google Scholar 

  97. Volkow ND, Wang GJ, Fowler JS, Ding YS. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psych. 2005;57:1410–5.

    CAS  Google Scholar 

  98. Beversdorf DQ. Neuropsychopharmacological regulation of performance on creativity-related tasks. Curr Opin Behav Sci. 2019;27:55–63.

    PubMed  Google Scholar 

  99. Beversdorf DQ, Hughes JD, Steinberg BA, Lewis LD, Heilman KM. Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport. 1999;10:2763–7.

    CAS  PubMed  Google Scholar 

  100. Musslick S, Cohen JD. Rationalizing constraints on the capacity for cognitive control. Trends Cogn Sci. 2021;25:757–75.

    PubMed  Google Scholar 

  101. Mehta MA, McGowan SW, Lawrence AD, Aitken MR, Montgomery AJ, Grasby PM. Systemic sulpiride modulates striatal blood flow: relationships to spatial working memory and planning. Neuroimage. 2003;20:1982–94.

    PubMed  Google Scholar 

  102. Mueller EM, Makeig S, Stemmler G, Hennig J, Wacker J. Dopamine effects on human error processing depend on catechol-O-methyltransferase VAL158MET genotype. J Neurosci. 2011;31:15818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Therapeutics. 1999;288:774–81.

    CAS  Google Scholar 

  104. Mereu G, Casu M, Gessa GL. (—)-Sulpiride activates the firing rate and tyrosine hydroxylase activity of dopaminergic neurons in unanesthetized rats. Brain Res. 1983;264:105–10.

    CAS  PubMed  Google Scholar 

  105. Eisenegger C, Naef M, Linssen A, Clark L, Gandamaneni PK, Müller U, et al. Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology. 2014;39:2366–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Boschen SL, Andreatini R, Da Cunha C. Activation of postsynaptic D2 dopamine receptors in the rat dorsolateral striatum prevents the amnestic effect of systemically administered neuroleptics. Behav Brain Res. 2015;281:283–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by a Vici grant to R.C. from the Netherlands Organization for Scientific Research (NWO; Grant No. 453-14-015).

Author information

Authors and Affiliations

Authors

Contributions

CS: data curation, formal analysis, writing – original draft, writing – review & editing, software, visualization; RB: data curation, formal analysis (of the PET data), investigation, software, writing - review & editing. JM: project administration, data curation, investigation, writing - review & editing; LH: investigation, writing - review & editing; DP: investigation, software, writing - review & editing; JB: supervision, writing - review and editing.; R-JV: investigation, writing – review and editing; MB: methodology, writing - review & editing; RC: study conception, study design, overarching supervision of data acquisition, analyses and writing, writing - review & editing.

Corresponding author

Correspondence to Ceyda Sayalı.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayalı, C., van den Bosch, R., Määttä, J.I. et al. Methylphenidate undermines or enhances divergent creativity depending on baseline dopamine synthesis capacity. Neuropsychopharmacol. 48, 1849–1858 (2023). https://doi.org/10.1038/s41386-023-01615-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01615-2

Search

Quick links