Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice

Abstract

The effects of context on the subjective experience of serotonergic psychedelics have not been fully examined in human neuroimaging studies, partly due to limitations of the imaging environment. Here, we administered saline or psilocybin to mice in their home cage or an enriched environment, immunofluorescently-labeled brain-wide c-Fos, and imaged iDISCO+ cleared tissue with light sheet fluorescence microscopy (LSFM) to examine the impact of environmental context on psilocybin-elicited neural activity at cellular resolution. Voxel-wise analysis of c-Fos-immunofluorescence revealed clusters of neural activity associated with main effects of context and psilocybin-treatment, which were validated with c-Fos+ cell density measurements. Psilocybin increased c-Fos expression in subregions of the neocortex, caudoputamen, central amygdala, and parasubthalamic nucleus while it decreased c-Fos in the hypothalamus, cortical amygdala, striatum, and pallidum in a predominantly context-independent manner. To gauge feasibility of future mechanistic studies on ensembles activated by psilocybin, we confirmed activity- and Cre-dependent genetic labeling in a subset of these neurons using TRAP2+/−;Ai14+ mice. Network analyses treating each psilocybin-sensitive cluster as a node indicated that psilocybin disrupted co-activity between highly correlated regions, reduced brain modularity, and dramatically attenuated intermodular co-activity. Overall, our results indicate that main effects of context and psilocybin were robust, widespread, and reorganized network architecture, whereas context×psilocybin interactions were surprisingly sparse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodological workflow for the identification and validation of neural populations activated by psilocybin across contexts.
Fig. 2: Main effects of context and psilocybin on c-Fos-IF.
Fig. 3: Modest interactions between context and psilocybin.
Fig. 4: Network analysis of neural populations sensitive to psilocybin.

Similar content being viewed by others

Data availability

Custom scripts and detailed protocols are at https://github.com/b-heifets/UNRAVEL. Raw data (~30GB/hemisphere) are available upon request.

References

  1. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  2. Golden TL, Magsamen S, Sandu CC, Lin S, Roebuck GM, Shi KM, et al. Effects of Setting on Psychedelic Experiences, Therapies, and Outcomes: A Rapid Scoping Review of the Literature. Curr Top Behav Neurosci. 2022;56:35–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hartogsohn I. Constructing drug effects: A history of set and setting. Drug Sci Policy Law. 2017;3:1–17.

  4. Johnson MW, Hendricks PS, Barrett FS, Griffiths RR. Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharm Ther. 2019;197:83–102.

    Article  CAS  Google Scholar 

  5. Roseman L, Nutt DJ, Carhart-Harris RL. Quality of Acute Psychedelic Experience Predicts Therapeutic Efficacy of Psilocybin for Treatment-Resistant Depression. Front Pharmacol. 2018;8:1–10.

  6. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2021;78:481–9.

    Article  PubMed  Google Scholar 

  7. Nygart VA, Pommerencke LM, Haijen E, Kettner H, Kaelen M, Mortensen EL, et al. Antidepressant effects of a psychedelic experience in a large prospective naturalistic sample. J Psychopharmacol Oxf Engl. 2022;36:932–42.

    Article  Google Scholar 

  8. Forstmann M, Yudkin DA, Prosser AMB, Heller SM, Crockett MJ. Transformative experience and social connectedness mediate the mood-enhancing effects of psychedelic use in naturalistic settings. Proc Natl Acad Sci USA. 2020;117:2338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci. 2012;109:2138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis CR, Preller KH, Kraehenmann R, Michels L, Staempfli P, Vollenweider FX. Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. NeuroImage 2017;159:70–8.

    Article  CAS  PubMed  Google Scholar 

  11. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, et al. Neurometabolic Effects of Psilocybin, 3,4-Methylenedioxyethylamphetamine (MDE) and d-Methamphetamine in Healthy Volunteers: A Double-Blind, Placebo-Controlled PET Study with [18F]FDG. Neuropsychopharmacology 1999;20:565–81.

    Article  CAS  PubMed  Google Scholar 

  12. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J. Positron Emission Tomography and Fluorodeoxyglucose Studies of Metabolic Hyperfrontality and Psychopathology in the Psilocybin Model of Psychosis. Neuropsychopharmacology 1997;16:357–72.

    Article  CAS  PubMed  Google Scholar 

  13. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.

    Article  CAS  PubMed  Google Scholar 

  14. Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 1988;240:1328–31.

    Article  CAS  PubMed  Google Scholar 

  15. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell 2016;165:1789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin M, Nguyen JD, Weber SJ, Mejias-Aponte CA, Madangopal R, Golden SA. SMART: An Open-Source Extension of WholeBrain for Intact Mouse Brain Registration and Segmentation. Eneuro 2022;9:0482–21.2022.

    Article  Google Scholar 

  17. Hansen HH, Perens J, Roostalu U, Skytte JL, Salinas CG, Barkholt P, et al. Whole-brain activation signatures of weight-lowering drugs. Mol Metab. 2021;47:101171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davoudian PA, Shao L-X, Kwan AC. Shared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin. ACS Chem Neurosci. 2023:acschemneuro.2c00637.

  19. DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 2017;357:1149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sert NP, du, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biol. 2020;18:e3000410.

    Article  Google Scholar 

  22. National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research, Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. The National Academies Press: Washington, D.C.; 2011.

  23. Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal. 2012;4:556–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 2021;109:2535–44.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging. Cell 2014;159:896–910.

    Article  CAS  PubMed  Google Scholar 

  26. Kimbrough A, Lurie DJ, Collazo A, Kreifeldt M, Sidhu H, Macedo GC, et al. Brain-wide functional architecture remodeling by alcohol dependence and abstinence. Proc Natl Acad Sci. 2020;117:2149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  28. Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q, et al. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun. 2019;10:5504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Perens J, Salinas CG, Skytte JL, Roostalu U, Dahl AB, Dyrby TB, et al. An Optimized Mouse Brain Atlas for Automated Mapping and Quantification of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy. Neuroinformatics 2021;19:433–46.

    Article  PubMed  Google Scholar 

  31. Wang Q, Ding S-L, Li Y, Royall J, Feng D, Lesnar P, et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell 2020;181:936–53.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 2006;31:1116–28.

    Article  PubMed  Google Scholar 

  33. Carvajal-Camelo EE, Bernal J, Oliver A, Lladó X, Trujillo M, Initiative TADN. Evaluating the Effect of Intensity Standardisation on Longitudinal Whole Brain Atrophy Quantification in Brain Magnetic Resonance Imaging. Appl Sci. 2021;11:1773.

    Article  CAS  Google Scholar 

  34. Sternberg. Biomedical Image Processing. Computer. 1983;16:22–34.

    Article  Google Scholar 

  35. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004;23:S208–S219.

    Article  PubMed  Google Scholar 

  36. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage 2014;92:381–97.

    Article  PubMed  Google Scholar 

  37. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Google Scholar 

  38. Bennett C, Miller M, Wolford G. Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: an argument for multiple comparisons correction. NeuroImage 2009;47:S125.

    Article  Google Scholar 

  39. Genovese CR, Lazar NA, Nichols T. Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage 2002;15:870–8.

    Article  PubMed  Google Scholar 

  40. Perens J, Skytte JL, Salinas CG, Hecksher-Sorensen J, Dyrby TB, Dahl AB. Comparative Study Of Voxel-Based Statistical Analysis Methods For Fluorescently Labelled And Light Sheet Imaged Whole-Brain Samples. 2021 IEEE 18th Int. Symp. Biomed. 2021. Imaging ISBI, Nice, France: IEEE; p. 1433–7.

  41. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019;16:1226–32.

    Article  CAS  PubMed  Google Scholar 

  42. Kimbrough A, Kallupi M, Smith LC, Simpson S, Collazo A, George O. Characterization of the Brain Functional Architecture of Psychostimulant Withdrawal Using Single-Cell Whole-Brain Imaging. ENeuro. 2021;8:1–34.

  43. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010;52:1059–69.

    Article  PubMed  Google Scholar 

  44. Guimerà R, Nunes, Amaral LA. Functional cartography of complex metabolic networks. Nature 2005;433:895–900.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hallquist MN, Hillary FG. Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world. Netw Neurosci. 2018;3:1–26.

    PubMed  PubMed Central  Google Scholar 

  46. Chowdhury A, Caroni P. Time units for learning involving maintenance of system-wide cFos expression in neuronal assemblies. Nat Commun. 2018;9:4122.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016;113:7900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woo C-W, Krishnan A, Wager TD. Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage 2014;91:412–9.

    Article  PubMed  Google Scholar 

  49. Ali AEA, Wilson YM, Murphy M. A single exposure to an enriched environment stimulates the activation of discrete neuronal populations in the brain of the fos-tau-lacZ mouse. Neurobiol Learn Mem. 2009;92:381–90.

    Article  PubMed  Google Scholar 

  50. van Praag H, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nat Rev Neurosci. 2000;1:191–8.

    Article  PubMed  Google Scholar 

  51. Carhart-Harris RL, Bolstridge M, Day CMJ, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacol (Berl). 2018;235:399–408.

    Article  CAS  Google Scholar 

  52. Carhart-Harris RL. Translational Challenges in Psychedelic Medicine. N Engl J Med. 2023;388:476–7.

    Article  PubMed  Google Scholar 

  53. Golden CT, Chadderton P. Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. Sci Rep. 2022;12:12702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Larsen IB, Knudsen GM, et al. Acute and long-term effects of psilocybin on energy balance and feeding behavior in mice. Transl Psychiatry. 2022;12:1–12.

    Article  Google Scholar 

  56. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17:1092–103.

    Article  CAS  PubMed  Google Scholar 

  57. Ey E, Leblond CS, Bourgeron T. Behavioral profiles of mouse models for autism spectrum disorders. Autism Res. 2011;4:5–16.

    Article  PubMed  Google Scholar 

  58. Solinas M, Chauvet C, Thiriet N, El Rawas R, Jaber M. Reversal of cocaine addiction by environmental enrichment. Proc Natl Acad Sci. 2008;105:17145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson DIG, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA. Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 2013;23:352–66.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schmack K, Bosc M, Ott T, Sturgill JF, Kepecs A. Striatal dopamine mediates hallucination-like perception in mice. Science. 2021;372:eabf4740.

  61. Lee H-M, Roth BL. Hallucinogen actions on human brain revealed. Proc Natl Acad Sci. 2012;109:1820–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DNK, et al. Structure–Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice. ACS Pharm Transl Sci. 2022;5:1181–96.

    Article  CAS  Google Scholar 

  63. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.

    Article  CAS  PubMed  Google Scholar 

  64. Winter JC, Rice KC, Amorosi DJ, Rabin RA. Psilocybin-induced stimulus control in the rat. Pharm Biochem Behav. 2007;87:472–80.

    Article  CAS  Google Scholar 

  65. Andrade R, Weber E. Htr2a Gene and 5-HT2A Receptor Expression in the Cerebral Cortex Studied Using Genetically Modified Mice. Front Neurosci. 2010;4:1–12.

  66. Casey AB, Cui M, Booth RG, Canal CE. “Selective” serotonin 5-HT2A receptor antagonists. Biochem Pharm. 2022;200:115028.

    Article  CAS  PubMed  Google Scholar 

  67. Vollenweider FX. Advances and Pathophysiological Models of Hallucinogenic Drug Actions in Humans: A Preamble to Schizophrenia Research. Pharmacopsychiatry 1998;31:92–103.

    Article  CAS  PubMed  Google Scholar 

  68. Torregrossa MM, Gordon J, Taylor JR. Double Dissociation between the Anterior Cingulate Cortex and Nucleus Accumbens Core in Encoding the Context versus the Content of Pavlovian Cocaine Cue Extinction. J Neurosci. 2013;33:8370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cullen PK, Gilman TL, Winiecki P, Riccio DC, Jasnow AM. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization. Neurobiol Learn Mem. 2015;124:19–27.

    Article  PubMed  Google Scholar 

  70. Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety. 2017;34:9–24.

    Article  PubMed  Google Scholar 

  71. Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci. 2022;25:1407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987;237:192–7.

    Article  CAS  PubMed  Google Scholar 

  73. Martin DA, Nichols CD. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine 2016;11:262–77.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hoffman GE, Smith MS, Verbalis JG. c-Fos and Related Immediate Early Gene Products as Markers of Activity in Neuroendocrine Systems. Front Neuroendocrinol. 1993;14:173–213.

    Article  CAS  PubMed  Google Scholar 

  75. Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM. Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia. Neuroscience 1997;81:93–112.

    Article  CAS  PubMed  Google Scholar 

  76. Noble S, Scheinost D, Constable RT. Cluster failure or power failure? Evaluating sensitivity in cluster-level inference. NeuroImage 2020;209:116468.

    Article  PubMed  Google Scholar 

  77. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. ACS Chem Neurosci. 2020;11:864–71.

    Article  CAS  PubMed  Google Scholar 

  78. Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, Jaric I, et al. Reproducibility of animal research in light of biological variation. Nat Rev Neurosci. 2020;21:384–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors offer their sincere gratitude to Dr Michel B. Hell for his help with adapting the CLIJx plugin to allow for fractional assignment of cells overlapping region boundaries during 3D object counting on the GPU, Mr Daniel F. Cardozo Pinto for helpful discussions, and Miss Zahra Rastegarmoghaddam for her assistance with initial adaptation of an Excel template for use with the LSFM atlas. We also thank the Wu Tsai Neuroscience Center, Neuroscience Microscopy Service for initial guidance on light sheet microscopy (S10OD025091-01) and help collecting pilot data. Figure 1 was created with BioRender.

Funding

XZ and LMW acknowledge support from the National Institute of Drug Abuse under award P50DA042012. MBP acknowledges support from the National Institute of Drug Abuse under award K99DA056573.

Author information

Authors and Affiliations

Authors

Contributions

DRR: Writing—original draft, conceptualization, investigation, data curation, formal analysis, methodology, software, validation, visualization. ABC: Writing—original draft, conceptualization, investigation, data curation, formal analysis, methodology, software, validation, visualization. DANB: Conceptualization, methodology, software, writing—review & editing. XZ: Formal analysis, methodology, software, visualization, writing—review & editing. TMH: Conceptualization, writing—review & editing. GRO: Software. MP: Conceptualization, methodology, writing—review & editing. CHH: Writing—review & editing, supervision. LMW: Writing—review & editing, supervision. RCM: Writing—review & editing, supervision. BDH: Writing—review & editing, conceptualization, methodology, funding acquisition, project administration, resources, supervision.

Corresponding author

Correspondence to Boris D. Heifets.

Ethics declarations

Competing interests

LMW has served as a scientific advisor for One Mind Psyberguide, a member of the executive advisory board for the Laureate Institute for Brain Research and holds patent 16921388 (Systems and Methods for Detecting Complex Networks in MRI Image Data) unrelated to the present study. RCM is on the scientific advisory boards of MapLight Therapeutics, Bright Minds, MindMed, Cyclerion, AZTherapies, and Aelis Farma. BDH is on the scientific advisory boards of Osmind and Journey Clinical and is a consultant for Clairvoyant Therapeutics and Vine Ventures. The remaining authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rijsketic, D.R., Casey, A.B., Barbosa, D.A.N. et al. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. Neuropsychopharmacol. 48, 1798–1807 (2023). https://doi.org/10.1038/s41386-023-01613-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01613-4

This article is cited by

Search

Quick links