Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson’s disease and OCD-like behaviors in mice

Abstract

The subthalamic nucleus (STN) is a component of the basal ganglia and plays a key role to control movement and limbic-associative functions. STN modulation with deep brain stimulation (DBS) improves the symptoms of Parkinson’s disease (PD) and obsessive–compulsive disorder (OCD) patients. However, DBS does not allow for cell-type-specific modulation of the STN. While extensive work has focused on elucidating STN functionality, the understanding of the role of specific cell types is limited. Here, we first performed an anatomical characterization of molecular markers for specific STN neurons. These studies revealed that most STN neurons express Pitx2, and that different overlapping subsets express Gabrr3, Ndnf, or Nos1. Next, we used optogenetics to define their roles in regulating locomotor and limbic functions in mice. Specifically, we showed that optogenetic photoactivation of STN neurons in Pitx2-Cre mice or of the Gabrr3-expressing subpopulation induces locomotor changes, and improves locomotion in a PD mouse model. In addition, photoactivation of Pitx2 and Gabrr3 cells induced repetitive grooming, a phenotype associated with OCD. Repeated stimulation prompted a persistent increase in grooming that could be reversed by fluoxetine treatment, a first-line drug therapy for OCD. Conversely, repeated inhibition of STNGabrr3 neurons suppressed grooming in Sapap3 KO mice, a model for OCD. Finally, circuit and functional mapping of STNGabrr3 neurons showed that these effects are mediated via projections to the globus pallidus/entopeduncular nucleus and substantia nigra reticulata. Altogether, these data identify Gabrr3 neurons as a key population in mediating the beneficial effects of STN modulation thus providing potential cellular targets for PD and OCD drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of subthalamic nucleus (STN) neuronal subpopulations.
Fig. 2: Optogenetic activation of STN neurons (STNPitx2) inhibits locomotion and induces OCD-like repetitive behavior in mice.
Fig. 3: Optogenetic activation of Gabrr3-expressing STN neuronal subpopulation (STNGabrr3) inhibits locomotion and induces OCD-like repetitive behavior in mice.
Fig. 4: Optogenetic modulation of STNGabrr3 neurons improves the pathologic phenotypes of PD and OCD mouse models.
Fig. 5: Anatomic and functional study of STNGabrr3 neuronal inputs and outputs.

Similar content being viewed by others

References

  1. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–90.

    Article  PubMed  Google Scholar 

  2. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15:53–63.

    Article  CAS  PubMed  Google Scholar 

  3. Paul DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15:410–24.

    Article  Google Scholar 

  4. Robbins TW, Vaghi MM, Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron. 2019;102:27–47.

    Article  CAS  PubMed  Google Scholar 

  5. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8:623–35.

    Article  CAS  PubMed  Google Scholar 

  6. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.

    Article  CAS  PubMed  Google Scholar 

  7. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  8. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.

    Article  CAS  PubMed  Google Scholar 

  9. Blomstedt P, Sjöberg RL, Hansson M, Bodlund O, Hariz MI. Deep brain stimulation in the treatment of obsessive-compulsive disorder. World Neurosurg. 2013;80:e245–53.

    Article  PubMed  Google Scholar 

  10. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46.

    Article  CAS  PubMed  Google Scholar 

  11. DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT. Role of basal ganglia in limb movements. Hum Neurobiol. 1984;2:235–44.

    CAS  PubMed  Google Scholar 

  12. Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol. 2003;13:696–706.

    Article  CAS  PubMed  Google Scholar 

  13. Patel NK, Heywood P, O’Sullivan K, McCarter R, Love S, Gill SS. Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain. 2003;126:1136–45.

    Article  PubMed  Google Scholar 

  14. Benazzouz A, Gross C, Féger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5:382–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mallet L, Schüpbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. PNAS U S A. 2007;104:10661–6.

    Article  CAS  Google Scholar 

  16. Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999;340:1476–80.

    Article  CAS  PubMed  Google Scholar 

  17. Smeding HM, Speelman JD, Koning-Haanstra M, Schuurman PR, Nijssen P, van Laar T, et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology. 2006;66:1830–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hälbig TD, Tse W, Frisina PG, Baker BR, Hollander E, Shapiro H, et al. Subthalamic deep brain stimulation and impulse control in Parkinson’s disease. Eur J Neurol. 2009;16:493–7.

    Article  PubMed  Google Scholar 

  19. Castrioto A, Lhommée E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13:287–305.

    Article  PubMed  Google Scholar 

  20. Karachi C, Grabli D, Baup N, Mounayar S, Tandé D, François C, et al. Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys. Mov Disord. 2009;24:1183–92.

    Article  PubMed  Google Scholar 

  21. Chang AD, Berges VA, Chung SJ, Fridman GY, Baraban JM, Reti IM. High-frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in autism-like mouse models. Neuropsychopharmacology. 2016;41:1813–21.

    Article  CAS  PubMed  Google Scholar 

  22. Klavir O, Flash S, Winter C, Joel D. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol. 2009;215:101–9.

    Article  CAS  PubMed  Google Scholar 

  23. Uslaner JM, Robinson TE. Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation? Eur J Neurosci. 2006;24:2345–54.

    Article  PubMed  Google Scholar 

  24. Winstanley CA, Baunez C, Theobald DE, Robbins TW. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci. 2005;21:3107–16.

    Article  PubMed  Google Scholar 

  25. Breysse E, Pelloux Y, Baunez C. The good and bad differentially encoded within the subthalamic nucleus in rats. eNeuro. 2015;2. https://doi.org/10.1523/ENEURO.0014-15.2015.

  26. Baunez C, Dias C, Cador M, Amalric M. The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci. 2005;8:484–9.

    Article  CAS  PubMed  Google Scholar 

  27. Stephenson-Jones M, Yu K, Ahrens S, Tucciarone JM, van Huijstee AN, Mejia LA, et al. A basal ganglia circuit for evaluating action outcomes. Nature. 2016;539:289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Martin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, Condie BG, et al. PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol. 2004;267:93–108.

    Article  CAS  PubMed  Google Scholar 

  29. Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohima P. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc. 2007;2:2538–44.

    Article  CAS  PubMed  Google Scholar 

  30. Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci. 2016;17:45–59.

    Article  CAS  PubMed  Google Scholar 

  31. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.

    Article  CAS  PubMed  Google Scholar 

  32. Yelnik J, Percheron G. Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience. 1979;4:1717–43.

    Article  CAS  PubMed  Google Scholar 

  33. Kitai ST, Kita H. Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MB, Jayaraman A, editors. The basal ganglia II‐Structure and function: current concepts. Advances in behavioral biology. New York: Plenum Press; 1987. p. 357–73.

  34. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76. (celltypes.brain-map.org)

    Article  CAS  PubMed  Google Scholar 

  35. The Gene Expression Nervous System Atlas (GENSAT) Project. NINDS contracts N01NS02331 & HHSN271200723701C to The Rockefeller University. New York, NY. (GENSAT.org).

  36. Schweizer N, Viereckel T, Smith-Anttila CJ, Nordenankar K, Arvidsson E, Mahmoudi S, et al. Reduced Vglut2/Slc17a6 gene expression levels throughout the mouse subthalamic nucleus cause cell loss and structural disorganization followed by increased motor activity and decreased sugar consumption. eNeuro. 2016;3. https://doi.org/10.1523/ENEURO.0264-16.2016.

  37. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 1970;24:485–93.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007;448:894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camilla d’Angelo LS, Eagle DM, Grant JE, Fineberg NA, Robbins TW, Chamberlain SR. Animal models of obsessive-compulsive spectrum disorders. CNS Spectr. 2014;19:28–49.

    Article  PubMed  Google Scholar 

  42. Kita H, Kitai ST. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol. 1987;260:435–52.

    Article  CAS  PubMed  Google Scholar 

  43. de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Curr Psychiatry Rep. 2011;13:274–82.

    Article  PubMed  Google Scholar 

  44. Bourne SK, Eckhardt CA, Sheth SA, Eskandar EN. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits. Front Integr Neurosci. 2012;6:29.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Welter ML, Schüpbach M, Czernecki V, Karachi C, Fernandez-Vidal S, Golmard JL, et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology. 2014;82:1352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schweizer N, Pupe S, Arvidsson E, Nordenankar K, Smith-Anttila CJ, Mahmoudi S, et al. Limiting glutamate transmission in a Vglut2-expressing subpopulation of the subthalamic nucleus is sufficient to cause hyperlocomotion. Proc Natl Acad Sci U S A. 2014;111:7837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A. Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J. 2003;17:1820–30.

    Article  CAS  PubMed  Google Scholar 

  48. Dvorzhak A, Gertler C, Harnack D, Grantyn R. High frequency stimulation of the subthalamic nucleus leads to presynaptic GABA(B)-dependent depression of subthalamo-nigral afferents. PLoS ONE. 2013;8:e82191.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heida T, Marani E, Usunoff KG (2001). The subthalamic nucleus. Part II: modelling and simulation of activity. Berlin Heidelberg, Germany: Springer-Verlag; 2008. p. 14–30.

  50. Fife KH, Gutierrez-Reed NA, Zell V, Bailly J, Lewis CM, Aron AR, et al. Causal role for the subthalamic nucleus in interrupting behavior. Elife. 2017;6:e27689.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16:43–51.

    Article  PubMed  Google Scholar 

  52. Chassain C, Melon C, Salin P, Vitale F, Couraud S, Durif F, et al. Metabolic, synaptic and behavioral impact of 5-week chronic deep brain stimulation in hemiparkinsonian rats. J Neurochem. 2016;136:1004–16.

    Article  CAS  PubMed  Google Scholar 

  53. American Psychiatric Association. Practice guideline for the treatment of patients with major depressive disorder, third edition. 2010. http://psychiatryonline.org/guidelines.aspx.

  54. Karachi C, Yelnik J, Tandé D, Tremblay L, Hirsch EC, François C. The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Mov Disord. 2005;20:172–80.

    Article  PubMed  Google Scholar 

  55. Benarroch EE. Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology. 2008;70:1991–5.

    Article  PubMed  Google Scholar 

  56. Alkemade A, Forstmann BU. Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? Neuroimage. 2014;95:326–9.

    Article  PubMed  Google Scholar 

  57. Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell. 2015;160:1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Timothy Cox of the University of Washington for contributing the Pitx2-Cre mice, Dr Marc Flajolet and the Greengard Laboratory at The Rockefeller University for allowing the use of the Home Cage Environment (Clever Sys Inc.), Drs Claire Henchcliffe, Andrea Lee, and the PD & Movement Disorders Institute at Weill Cornell Medicine for consulting on the behavioral phenotype, Drs Alejandro Lopez and Jessica Jimenez for helpful discussions and manuscript revision, James Knox and Kyle Pellegrino for technical assistance, Anoj Ilanges and Dr Virginia A. Pedicord for the helpful discussions, and The Rockefeller University Comparative Bioscience Center and Bio-Imaging Resource Center. LP acknowledges support from the The David Rockefeller Fellowship and Boehringer Ingelheim Fonds PhD Fellowship. JMF acknowledges support from JPB foundation. MS acknowledges support from the Kavli NSI Fellowship, the Robertson Therapeutic Fund and NIDDK grant K99 (DK120869).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Parolari, Nathaniel Heintz or Jeffrey M. Friedman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parolari, L., Schneeberger, M., Heintz, N. et al. Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson’s disease and OCD-like behaviors in mice. Mol Psychiatry 26, 7029–7046 (2021). https://doi.org/10.1038/s41380-021-01162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01162-6

This article is cited by

Search

Quick links