Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction

Abstract

Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proton magnetic resonance spectroscopy (1H-MRS) assessment of glutamate concentration in the nucleus accumbens.
Fig. 2: Craving as a function of cocaine-cue stimulation.
Fig. 3: Impact of cocaine-cue stimulation on glutamate levels within the nucleus accumbens in cocaine addiction.

Similar content being viewed by others

References

  1. Asensio S, Romero MJ, Palau C, Sanchez A, Senabre I, Morales JL, et al. Altered neural response of the appetitive emotional system in cocaine addiction: an fMRI Study. Addict Biol. 2010;15:504–16.

    PubMed  Google Scholar 

  2. Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T, et al. Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry. 2007;164:43–51.

    PubMed  PubMed Central  Google Scholar 

  3. Preller KH, Herdener M, Schilbach L, Stämpfli P, Vonmoos M, Ingold N, et al. Functional changes of the reward system underlie blunted response to social gaze in cocaine users. Proc Natl Acad Sci USA. 2014;111:2842–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirschner M, Sladky R, Haugg A, Stämpfli P, Jehli E, Hodel M, et al. Self-regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback. EBioMedicine. 2018;37:489–98.

    PubMed  PubMed Central  Google Scholar 

  5. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2009;35:4–26.

    PubMed Central  Google Scholar 

  6. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.

    CAS  PubMed  Google Scholar 

  7. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63.

    PubMed  PubMed Central  Google Scholar 

  8. Scofield MD, Kalivas PW. Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist. 2014;20:610–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mulholland PJ, Chandler LJ, Kalivas PW. Signals from the fourth dimension regulate drug relapse. Trends Neurosci. 2016;39:472–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2003;23:3531–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Quednow BB, Herdener M. Human pharmacology for addiction medicine: from evidence to clinical recommendations. Prog Brain Res. 2016;224:227–50.

    PubMed  Google Scholar 

  12. Hulka LM, Scheidegger M, Vonmoos M, Preller KH, Baumgartner MR, Herdener M, et al. Glutamatergic and neurometabolic alterations in chronic cocaine users measured with (1) H-magnetic resonance spectroscopy. Addict Biol. 2014;21:205–17.

    PubMed  Google Scholar 

  13. Schmaal L, Veltman DJ, Nederveen A, van den Brink W, Goudriaan AE. N-Acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a Randomized Crossover Magnetic Resonance Spectroscopy Study. Neuropsychopharmacology. 2012;37:2143–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Salmeron BJ, Ross TJ, Xi Z-X, Stein EA, Yang Y. Lower glutamate levels in rostral anterior cingulate of chronic cocaine users—a (1)H-MRS study using TE-averaged PRESS at 3 T with an optimized quantification strategy. Psychiatry Res. 2009;174:171–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez D, Slifstein M, Nabulsi N, Grassetti A, Urban NBL, Perez A, et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry. 2014;75:165–71.

    CAS  PubMed  Google Scholar 

  16. de Graaf RA. In vivo NMR spectroscopy. 2nd ed. Chichester, UK: John Wiley & Sons Ltd; 2007.

    Google Scholar 

  17. Neto LL, Oliveira E, Correia F, Ferreira AG. The human nucleus accumbens: where is it? A stereotactic, anatomical and magnetic resonance imaging study. Neuromodulation. 2008;11:13–22.

    PubMed  Google Scholar 

  18. Dreher W, Leibfritz D. New method for the simultaneous detection of metabolites and water in localized in vivo 1H nuclear magnetic resonance spectroscopy. Magn Reson Med. 2005;54:190–5.

    CAS  PubMed  Google Scholar 

  19. Hock A, MacMillan EL, Fuchs A, Kreis R, Boesiger P, Kollias SS, et al. Non-water-suppressed proton MR spectroscopy improves spectral quality in the human spinal cord. Magn Reson Med. 2012;69:1253–60.

    PubMed  Google Scholar 

  20. MacMillan EL, Chong DGQ, Dreher W, Henning A, Boesch C, Kreis R. Magnetization exchange with water and T1 relaxation of the downfield resonances in human brain spectra at 3.0 T. Magn Reson Med. 2011;65:1239–46.

    CAS  PubMed  Google Scholar 

  21. Zoelch N, Hock A, Henning A. Quantitative magnetic resonance spectroscopy at 3T based on the principle of reciprocity. NMR Biomed. 2018;55:e3875.

    Google Scholar 

  22. Yagen B, Hernandez O, Bend JR, Cox RH. Synthesis and relative stereochemistry of the four mercapturic acids derived from styrene oxide and N-acetylcysteine. Chem Biol Interact. 1981;34:57–67.

    CAS  PubMed  Google Scholar 

  23. McClure EA, Gipson CD, Malcolm RJ, Kalivas PW, Gray KM. Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs. 2014;28:95–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. American Psychiatric Association Press: Washington, DC, 2000.

  25. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–9.

    CAS  PubMed  Google Scholar 

  26. Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. Statistical parametric mapping. 1st ed. London: Academic Press; 2006.

    Google Scholar 

  27. Mardikian PN, LaRowe SD, Hedden S, Kalivas PW, Malcolm RJ. An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:389–94.

    CAS  Google Scholar 

  28. Holdiness MR. Clinical pharmacokinetics of N-acetylcysteine. Clin Pharmacokinet. 1991;20:123–34.

    CAS  PubMed  Google Scholar 

  29. Brown H, Prescott R. Applied mixed models in medicine. Chichester, UK: John Wiley & Sons; 2006.

    Google Scholar 

  30. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270:658–79.

    PubMed  Google Scholar 

  31. Knackstedt LA, Melendez RI, Kalivas PW. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry. 2010;67:81–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Trantham-Davidson H, LaLumiere RT, Reissner KJ, Kalivas PW, Knackstedt LA. Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci. 2012;32:12406–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol. 2015;20:316–23.

    CAS  PubMed  Google Scholar 

  34. Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci. 2005;25:6389–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, et al. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron. 2004;42:269–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaehle T, Bauch EM, Hinrichs H, Schmitt FC, Voges J, Heinze H-J, et al. Nucleus accumbens activity dissociates different forms of salience: evidence from human intracranial recordings. J Neurosci. 2013;33:8764–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Léna I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81:891–9.

    PubMed  Google Scholar 

  38. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.

    CAS  PubMed  Google Scholar 

  39. Batten SR, Pomerleau F, Quintero J, Gerhardt GA, Beckmann JS. The role of glutamate signaling in incentive salience: second-by-second glutamate recordings in awake Sprague-Dawley rats. J Neurochem. 2018;145:276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Gorman Tuura R, Warnock G, Ametamey S, Treyer V, Noeske R, Buck A, et al. Imaging glutamate redistribution after acute N-acetylcysteine administration: a simultaneous PET/MR study. NeuroImage. 2019;184:826–33.

    PubMed  Google Scholar 

  41. Schulte MHJ, Wiers RW, Boendermaker WJ, Goudriaan AE, van den Brink W, van Deursen DS, et al. The effect of N-acetylcysteine and working memory training on cocaine use, craving and inhibition in regular cocaine users: correspondence of lab assessments and Ecological Momentary Assessment. Addict Behav. 2017;79:24–31.

    PubMed  Google Scholar 

  42. Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N-acetylcysteine. Eur J Neurosci. 2019;50:2538–51.

    PubMed  Google Scholar 

  43. Olive MF, Cleva RM, Kalivas PW, Malcolm RJ. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharm Biochem Behav. 2012;100:801–10.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Johanna Klar, Nathalie Rieser, Martina Riva, and Colette Steinegger for assistance in data collection and Katrin Preller for support with questionnaire programming. This project was supported by a grant from the Zurich Center for Integrative Human Physiology, University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etna J. E. Engeli.

Ethics declarations

Conflict of interest

Unrelated to this study, MH has received speaker fees from Lundbeck, and has served as a consultant for and received research support from Novartis. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engeli, E.J.E., Zoelch, N., Hock, A. et al. Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction. Mol Psychiatry 26, 5277–5285 (2021). https://doi.org/10.1038/s41380-020-0828-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0828-z

This article is cited by

Search

Quick links