Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shedding a new light on Huntington’s disease: how blood can both propagate and ameliorate disease pathology

A Correction to this article was published on 24 July 2020

This article has been updated

Abstract

Huntington’s disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HTT/mHTT levels in blood and peripheral organs of parabionts.
Fig. 2: mHTT propagation and dilution in peripheral organs of parabionts.
Fig. 3: Mitochondrial function in peripheral organs of parabionts.
Fig. 4: Impact of parabiosis on striatal vasculature in parabionts.
Fig. 5: BBB disruption in parabionts.
Fig. 6: Impact of parabiosis on cortical HTT/mHTT levels of parabionts.
Fig. 7: Impact of parabiosis on neuronal and glial cell populations in parabionts.
Fig. 8: Summary of findings.

Similar content being viewed by others

Change history

References

  1. Phillips W, Shannon KM, Barker RA. The current clinical management of Huntington’s disease. Mov Disord. 2008;23:1491–504.

    PubMed  Google Scholar 

  2. Papp KV, Kaplan RF, Snyder PJ. Biological markers of cognition in prodromal Huntington’s disease: a review. Brain Cogn. 2011;77:280–91.

    PubMed  Google Scholar 

  3. Tang C, Feigin A. Monitoring Huntington’s disease progression through preclinical and early stages. Neurodegener Dis Manag. 2012;2:421–35.

    PubMed  Google Scholar 

  4. Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol. 2011;98:325–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vonsattel JPG, Keller C, Del Pilar, Amaya M. Neuropathology of Huntington’s disease. Handb Clin Neurol. 2008;89:599–618.

    PubMed  Google Scholar 

  6. Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 2004;14:95–104.

    CAS  PubMed  Google Scholar 

  7. Jana NR, Zemskov EA, Wang G, Nukina N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet. 2001;10:1049–59.

    CAS  PubMed  Google Scholar 

  8. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–48.

    CAS  PubMed  Google Scholar 

  9. Jeon I, Cicchetti F, Cisbani G, Lee S, Li E, Bae J, et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol 2016;132:577–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Investig. 2015;125:1979–86.

    PubMed  PubMed Central  Google Scholar 

  11. Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31–42.

    CAS  PubMed  Google Scholar 

  12. Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom. 2007;18:1249–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19:2522–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44:559–77.

    CAS  PubMed  Google Scholar 

  15. Saudou F, Humbert S. The biology of huntingtin. Neuron. 2016;89:910–26.

    CAS  PubMed  Google Scholar 

  16. Stuwe SH, Goetze O, Lukas C, Klotz P, Hoffmann R, Banasch M, et al. Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology. 2013;80:743–6.

    Google Scholar 

  17. Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol. 2009;19:147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiss A, Trager U, Wild EJ, Grueninger S, Farmer R, Landles C, et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Investig. 2012;122:3731–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205:1869–77.

    PubMed  PubMed Central  Google Scholar 

  20. Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S, et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci. 2012;32:133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med. 2017;7:a024240.

    PubMed  PubMed Central  Google Scholar 

  22. Masnata M, Cicchetti F. The evidence for the spread and seeding capacities of the mutant huntingtin protein in in vitro systems and their therapeutic implications. Front Neurosci. 2017;11:647.

    PubMed  PubMed Central  Google Scholar 

  23. Masnata M, Sciacca G, Maxan A, Bousset L, Denis HL, Lauruol F, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137:981–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ast A, Buntru A, Schindler F, Hasenkopf R, Schulz A, Brusendorf L, et al. mHTT seeding activity: a marker of disease progression and neurotoxicity in models of Huntington’s disease. Mol Cell. 2018;71:675–688.e6.

    CAS  PubMed  Google Scholar 

  25. Wagner AS, Politi AZ, Ast A, Bravo-Rodriguez K, Baum K, Buntru A, et al. Self-assembly of mutant huntingtin exon-1 fragments into large complex fibrillar structures involves nucleated branching. J Mol Biol. 2018;430:1725–44.

    CAS  PubMed  Google Scholar 

  26. Ko J, Isas JM, Sabbaugh A, Yoo JH, Pandey NK, Chongtham A, et al. Identification of distinct conformations associated with monomers and fibril assemblies of mutant huntingtin. Hum Mol Genet. 2018;27:2330–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim D-K, Cho K-W, Ahn WJ, Perez-Acuña D, Jeong H, Lee H-J, et al. Cell-to-cell transmission of polyglutamine aggregates in C. elegans. Exp Neurobiol. 2017;26:321–8.

    PubMed  PubMed Central  Google Scholar 

  28. Babcock DT, Ganetzky B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci. 2015;112:E5427–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One. 2012;7:e49838.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamran P, Sereti KI, Zhao P, Ali SR, Weissman IL, Ardehali R. Parabiosis in mice: a detailed protocol. J Vis Exp. 2013;80:50556.

    Google Scholar 

  31. Garneau AP, Marcoux A-A, Noël M, Frenette-Cotton R, Drolet M-C, Couet J, et al. Ablation of potassium-chloride cotransporter type 3 (Kcc3) in mouse causes multiple cardiovascular defects and isosmotic polyuria. PloS One. 2016;11:e0154398.

    PubMed  PubMed Central  Google Scholar 

  32. Denis HL, Lamontagne-Proulx J, St-Amour I, Mason SL, Rowley JW, Cloutier N, et al. Platelet abnormalities in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2019;90:272–83.

    PubMed  Google Scholar 

  33. Marcoux G, Duchez A-C, Cloutier N, Provost P, Nigrovic PA, Boilard E. Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci Rep. 2016;6:35928.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F. Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2007;12:377–90.

    CAS  PubMed  Google Scholar 

  35. Tung JW, Heydari K, Tirouvanziam R, Sahaf B, Parks DR, Herzenberg LA, et al. Modern flow cytometry: a practical approach. Clin Lab Med. 2007;27:453–68.

    PubMed  PubMed Central  Google Scholar 

  36. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    CAS  PubMed  Google Scholar 

  38. Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A, Ortiz-De-Solorzano C. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Technol. 2010;73:1019–29.

    Google Scholar 

  39. Miller JRC, Pfister EL, Liu W, Andre R, Träger U, Kennington LA, et al. Allele-selective suppression of mutant huntingtin in primary human blood cells. Sci Rep. 2017;7:46740.

    PubMed  PubMed Central  Google Scholar 

  40. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet. 2011;20:1438–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Choo YS, Johnson GVW, MacDonald M, Detloff PJ, Lesort M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet. 2004;13:1407–20.

    CAS  PubMed  Google Scholar 

  42. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-beta protein induces Alzheimer’s disease pathologies. Mol Psych. 2017;23:1948–56.

    Google Scholar 

  43. Merlini M, Wanner D, Nitsch RM. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer’s disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131:737–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Uspenskaia O, Liebetrau M, Herms J, Danek A, Hamann GF. Aging is associated with increased collagen type IV accumulation in the basal lamina of human cerebral microvessels. BMC Neurosci. 2004;5:37.

    PubMed  PubMed Central  Google Scholar 

  45. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagace M, Kuan WL, Saint-Pierre M, et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015;78:160–77.

    PubMed  Google Scholar 

  46. Di Pardo A, Amico E, Scalabrì F, Pepe G, Castaldo S, Elifani F, et al. Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington disease. Sci Rep. 2017;7:41316.

    PubMed  PubMed Central  Google Scholar 

  47. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12:1555–67.

    CAS  PubMed  Google Scholar 

  48. Deng YP, Wong T, Bricker-Anthony C, Deng B, Reiner A. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington’s disease mice. Neurobiol Dis. 2013;60:89–107.

    CAS  PubMed  Google Scholar 

  49. Deng Y-P, Wong T, Wan JY, Reiner A. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington’s disease. Front Syst Neurosci. 2014;8:198.

    PubMed  PubMed Central  Google Scholar 

  50. Hsu Y-T, Chang Y-G, Chern Y. Insights into GABAAergic system alteration in Huntington’s disease. Open Biol. 2018;8:180165.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem. 2010;113:1073–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cicchetti F, Gould PV, Parent A. Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res. 1996;730:232–7.

    CAS  PubMed  Google Scholar 

  53. Parent A, Cicchetti F, Beach TG. Calretinin-immunoreactive neurons in the human striatum. Brain Res. 1995;674:347–51.

    CAS  PubMed  Google Scholar 

  54. van Dellen A, Welch J, Dixon RM, Cordery P, York D, Styles P, et al. N-Acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice. Neuroreport. 2000;11:3751–7.

    PubMed  Google Scholar 

  55. DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat. 1997;14:1–19.

    CAS  PubMed  Google Scholar 

  56. Kim YE, Hosp F, Frottin F, Ge H, Mann M, Hayer-Hartl M, et al. Soluble oligomers of polyQ-expanded huntingtin target a multiplicity of key cellular factors. Mol Cell. 2016;63:951–64.

    CAS  PubMed  Google Scholar 

  57. Leitman J, Ulrich Hartl F, Lederkremer GZ. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun. 2013;4:2753.

    PubMed  Google Scholar 

  58. Tang BL. Unconventional secretion and intercellular transfer of mutant huntingtin. Cells. 2018;7:E59.

    PubMed  Google Scholar 

  59. Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira, de Almeida L. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Controlled Release. 2017;262:247–58.

    CAS  Google Scholar 

  60. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501:45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Soto C. Transmissible proteins: expanding the prion heresy. Cell. 2012;149:968–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Edgren G, Hjalgrim H, Rostgaard K, Lambert P, Wikman A, Norda R, et al. Transmission of neurodegenerative disorders through blood transfusion: a cohort study. Ann Intern Med. 2016;165:316–24.

    PubMed  Google Scholar 

  63. Llado L, Baliellas C, Casasnovas C, Ferrer I, Fabregat J, Ramos E, et al. Risk of transmission of systemic transthyretin amyloidosis after domino liver transplantation. Liver Transpl. 2010;16:1386–92.

    PubMed  Google Scholar 

  64. Holmes BB, Diamond MI. Amyotrophic lateral sclerosis and organ donation: is there risk of disease transmission? Ann Neurol. 2012;72:832–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Coffey SR, Bragg RM, Minnig S, Ament SA, Cantle JP, Glickenhaus A, et al. Peripheral huntingtin silencing does not ameliorate central signs of disease in the B6.HttQ111/+ mouse model of Huntington’s disease. PloS One 2017;12:e0175968.

    PubMed  PubMed Central  Google Scholar 

  66. Menalled L, El-Khodor BF, Patry M, Suárez-Fariñas M, Orenstein SJ, Zahasky B, et al. Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis. 2009;35:319–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zidek W, Ottens E, Heckmann U. Transmission of hypertension in rats by cross circulation. Hypertension. 1989;14:61–5.

    CAS  PubMed  Google Scholar 

  68. Bouwens JA, van Duijn E, Cobbaert CM, Roos RAC, van der Mast RC, Giltay EJ. Plasma cytokine levels in relation to neuropsychiatric symptoms and cognitive dysfunction in Huntington’s disease. J Hunt Dis. 2016;5:369–77.

    CAS  Google Scholar 

  69. Rocha NP, Ribeiro FM, Furr-Stimming E, Teixeira AL. Neuroimmunology of Huntington’s disease: revisiting evidence from human studies. Mediators Inflamm. 2016;2016:8653132.

    PubMed  PubMed Central  Google Scholar 

  70. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Horowitz AM, Villeda SA. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease. F1000 Res. 2017;6:1291.

    Google Scholar 

  72. Sha SJ, Deutsch GK, Tian L, Richardson K, Coburn M, Gaudioso JL, et al. Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol. 2019;76:35–40.

    PubMed  Google Scholar 

Download references

Acknowledgements

FC is a recipient of a Researcher Chair from the Fonds de Recherche du Québec en Santé (FRQS) providing salary support and operating funds, and receives funding from the Canadian Institutes of Health Research (CIHR) to conduct her HD-related research. At this time of the study, MR and HLD were supported by a Desjardins scholarships from the Fondation du CHU de Québec, and later by doctoral training scholarships from the FRQS. GS is supported by a doctoral training scholarship from the FRQS and MA by a post-doctoral fellowship from the same funding agency. Sincere thanks to Dr. Gillian Bates for generously providing the S829 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cicchetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieux, M., Alpaugh, M., Sciacca, G. et al. Shedding a new light on Huntington’s disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry 26, 5441–5463 (2021). https://doi.org/10.1038/s41380-020-0787-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0787-4

This article is cited by

Search

Quick links