Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation

Abstract

The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan–McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spontaneous calcium transients in dendritic spines reflect subthreshold synaptic activation.
Fig. 2: Aberrant calcium dynamics in apical dendritic spines in medial prefrontal cortex of R1117X mice.
Fig. 3: Reduced SST interneuron activity in vivo in R1117X mice.
Fig. 4: NMDAR currents in SST interneurons are diminished by the R1117X mutation in Shank3.
Fig. 5: Elevating SST interneuron activity in vivo ameliorates aberrant spine calcium dynamics.
Fig. 6: Behavioral consequences of manipulating prefrontal cortical SST interneurons.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

MATLAB scripts for the present study are available from the corresponding author upon reasonable request.

References

  1. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999;23:569–82.

    Article  CAS  PubMed  Google Scholar 

  2. Sala C, Piëch V, Wilson NR, Passafaro M, Liu G, Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron. 2001;31:115–30.

    Article  CAS  PubMed  Google Scholar 

  3. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 2011;21:594–603.

    Article  CAS  PubMed  Google Scholar 

  4. Phelan K, McDermid H. The 22q13. 3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol. 2011;2:186–201.

    PubMed  PubMed Central  Google Scholar 

  5. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25.

    Article  CAS  PubMed  Google Scholar 

  6. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81:1289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Guilmatre A, Huguet G, Delorme R, Bourgeron T. The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol. 2014;74:113–22.

    Article  CAS  PubMed  Google Scholar 

  9. Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA. 2010;107:7863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20:3093–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang M, Bozdagi O, Scattoni ML, Wöhr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32:6525–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao H, Tu Z, Xu H, Yan S, Yan H, Zheng Y, et al. Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res. 2017;27:1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Speed HE, Kouser M, Xuan Z, Reimers JM, Ochoa CF, Gupta N, et al. Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J Neurosci. 2015;35:9648–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci. 2019;22:1223–34.

    Article  CAS  PubMed  Google Scholar 

  17. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep. 2015;11:1400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin L, Ma K, Yan Z. Chemogenetic activation of prefrontal cortex in Shank3-deficient mice ameliorates social deficits, NMDAR hypofunction, and Sgk2 downregulation. iScience. 2019;17:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pagani M, Bertero A, Liska A, Galbusera A, Sabbioni M, Barsotti N, et al. Deletion of autism risk gene Shank3 disrupts prefrontal connectivity. J Neurosci. 2019;39:5299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee J, Chung C, Ha S, Lee D, Kim D-Y, Kim H, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci. 2015;9:94.

    PubMed  PubMed Central  Google Scholar 

  21. Mao W, Watanabe T, Cho S, Frost JL, Truong T, Zhao X, et al. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin‐expressing inhibitory interneurons. Eur J Neurosci. 2015;41:1025–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gogolla N, Takesian AE, Feng G, Fagiolini M, Hensch TK. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron. 2014;83:894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu C, Chen Q, Zhou T, Bozic D, Fu Z, Pan J, et al. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3. Mol Psychiatry. 2016;21:159.

    Article  CAS  PubMed  Google Scholar 

  24. Lim C-S, Kim H, Yu N-K, Kang SJ, Kim T, Ko H-G, et al. Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology. 2017;112:104–12.

    Article  CAS  PubMed  Google Scholar 

  25. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89:147–62.

    Article  CAS  PubMed  Google Scholar 

  27. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71:995–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu X, Roby KD, Callaway EM. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol. 2010;518:389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology. 2016;111:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pologruto TA, Sabatini BL, Svoboda K. ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online. 2003;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pnevmatikakis EA, Giovannucci A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J Neurosci Methods. 2017;291:83–94.

    Article  CAS  PubMed  Google Scholar 

  32. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 2015;350:aac9462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Petreanu L, Gutnisky DA, Huber D, Xu N-l, O’connor DH, Tian L, et al. Activity in motor–sensory projections reveals distributed coding in somatosensation. Nature. 2012;489:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods. 2010;7:399.

    Article  CAS  PubMed  Google Scholar 

  36. Lütcke H, Gerhard F, Zenke F, Gerstner W, Helmchen F. Inference of neuronal network spike dynamics and topology from calcium imaging data. Front Neural Circuits. 2013;7:201.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, et al. Subregion-and cell type–restricted gene knockout in mouse brain. Cell. 1996;87:1317–26.

    Article  CAS  PubMed  Google Scholar 

  38. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anagnostaras SG, Wood SC, Shuman T, Cai DJ, Leduc AD, Zurn KR, et al. Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the video freeze system. Front Behav Neurosci. 2010;4:158.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fan Z, Zhu H, Zhou T, Wang S, Wu Y, Hu H. Using the tube test to measure social hierarchy in mice. Nat Protoc. 2019;14:819.

    Article  CAS  PubMed  Google Scholar 

  41. Barthas F, Kwan AC. Secondary motor cortex: where ‘sensory’meets ‘motor’in the rodent frontal cortex. Trends Neurosci. 2017;40:181–93.

    Article  CAS  PubMed  Google Scholar 

  42. Laubach M, Amarante LM, Swanson K, White SR. What, if anything, is rodent prefrontal cortex? eNeuro. 2018;5. https://doi.org/10.1523/ENEURO.0315-18.2018.

  43. Grienberger C, Chen X, Konnerth A. Dendritic function in vivo. Trends Neurosci. 2015;38:45–54.

    Article  CAS  PubMed  Google Scholar 

  44. Ali F, Kwan AC. Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. Neurophotonics. 2019;7:011402.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iacaruso MF, Gasler IT, Hofer SB. Synaptic organization of visual space in primary visual cortex. Nature. 2017;547:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson DE, Whitney DE, Scholl B, Fitzpatrick D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci. 2016;19:1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun. 2020;11:72. https://doi.org/10.1038/s41467-019-13809-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. Sensitive red protein calcium indicators for imaging neural activity. Elife. 2016;5:e12727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang Y, Toledo‐Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol. 2004;561:65–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ. Compartmentalization of GABAergic inhibition by dendritic spines. Science. 2013;340:759–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marlin JJ, Carter AG. GABA-A receptor inhibition of local calcium signaling in spines and dendrites. J Neurosci. 2014;34:15898–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Muñoz W, Tremblay R, Levenstein D, Rudy B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science. 2017;355:954–9.

    Article  PubMed  CAS  Google Scholar 

  53. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell. 2017;171:522–39. e520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang H-X, Gao W-J. Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology. 2009;34:2028.

    Article  CAS  PubMed  Google Scholar 

  55. Han CJ, O’Tuathaigh CM, van Trigt L, Quinn JJ, Fanselow MS, Mongeau R, et al. Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci USA. 2003;100:13087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology. 2001;156:234–58.

    Article  CAS  PubMed  Google Scholar 

  57. Higley MJ, Sabatini BL. Calcium signaling in dendritic spines. Cold Spring Harb Perspect Biol. 2012;4:a005686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sabatini BL, Maravall M, Svoboda K. Ca2+ signaling in dendritic spines. Curr Opin Neurobiol. 2001;11:349–56.

    Article  CAS  PubMed  Google Scholar 

  59. Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33:15767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kwon T, Merchán-Pérez A, Rial VEM, Rodríguez J-R, DeFelipe J, Yuste R. Ultrastructural, molecular and functional mapping of GABAergic synapses on dendritic spines and shafts of neocortical pyramidal neurons. Cereb Cortex. 2019;29:2771–81.

    Article  PubMed  Google Scholar 

  61. Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CC. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci. 2012;15:607.

    Article  CAS  PubMed  Google Scholar 

  62. Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of γ-aminobutyric acid and glutamate alterations. Arch Neurol. 2006;63:1372–6.

    Article  PubMed  Google Scholar 

  63. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marín O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13:107.

    Article  PubMed  CAS  Google Scholar 

  65. Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron. 2011;72:231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bey AL, Wang X, Yan H, Kim N, Passman RL, Yang Y, et al. Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl Psychiatry. 2018;8:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:aaf2669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Vicidomini C, Ponzoni L, Lim D, Schmeisser MJ, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689.

    Article  CAS  PubMed  Google Scholar 

  69. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kenny E, Cormican P, Furlong S, Heron E, Kenny G, Fahey C, et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry. 2014;19:872.

    Article  CAS  PubMed  Google Scholar 

  72. Ohtsuki T, Sakurai K, Dou H, Toru M, Yamakawa-Kobayashi K, Arinami T. Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia. Mol Psychiatry. 2001;6:211.

    Article  CAS  PubMed  Google Scholar 

  73. Freunscht I, Popp B, Blank R, Endele S, Moog U, Petri H, et al. Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene. Behav Brain Funct. 2013;9:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators of NR2B‐containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol. 2009;157:1301–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koukouli F, Rooy M, Tziotis D, Sailor KA, O’Neill HC, Levenga J, et al. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med. 2017;23:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cichon J, Blanck TJ, Gan W-B, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci. 2017;20:1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuste R. Electrical compartmentalization in dendritic spines. Annu Rev Neurosci. 2013;36:429–49.

    Article  CAS  PubMed  Google Scholar 

  78. Nishiyama J, Yasuda R. Biochemical computation for spine structural plasticity. Neuron. 2015;87:63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lledo P-M, Zhang X, Südhof TC, Malenka RC, Nicoll RA. Postsynaptic membrane fusion and long-term potentiation. Science. 1998;279:399–403.

    Article  CAS  PubMed  Google Scholar 

  80. Hirsch JC, Crepel F. Postsynaptic calcium is necessary for the induction of LTP and LTD of monosynaptic EPSPs in prefrontal neurons: an in vitro study in the rat. Synapse. 1992;10:173–5.

    Article  CAS  PubMed  Google Scholar 

  81. Wang X-J, Tegnér J, Constantinidis C, Goldman-Rakic P. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natil Acad Sci. 2004;101:1368–73.

    Article  CAS  Google Scholar 

  82. Kim D, Jeong H, Lee J, Ghim J-W, Her ES, Lee S-H, et al. Distinct roles of parvalbumin-and somatostatin-expressing interneurons in working memory. Neuron. 2016;92:902–15.

    Article  CAS  PubMed  Google Scholar 

  83. Kamigaki T, Dan Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat Neurosci. 2017;20:854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siniscalchi MJ, Phoumthipphavong V, Ali F, Lozano M, Kwan AC. Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior. Nat Neurosci. 2016;19:1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Kwan and M. Picciotto for comments on the initial version of this paper; C.S. Chan for advice on electrophysiology; M. Picciotto for supplying pAAV-CMV-dsRed-pSico-GFP; S. Tomita for discussions; and I.-J. Kim for use of microscope. This work was supported by Simons Foundation Autism Research Initiative Pilot Award (ACK). Additional support was provided by National Institute of Mental Health grants R01MH112750 (ACK) and R21MH110712 (ACK), NARSAD Young Investigator Grant (ACK), Alzheimer’s Association Research Fellowship AARF-17-504924 (FA), and James Hudson Brown-Alexander Brown Coxe Postdoctoral Fellowship (FA).

Author information

Authors and Affiliations

Authors

Contributions

FA and ACK designed the research. FA performed surgery, imaging, behavioral experiments, and histology, and analyzed the data. L-XS and FA performed the slice electrophysiology experiments and analyzed the data. DMG, SP, and RSD performed molecular cloning, viral packaging, and in vitro validation. KS assisted with the imaging data analysis. CP assisted with PPI experiments. FA and ACK wrote the paper, with input from all other authors.

Corresponding author

Correspondence to Alex C. Kwan.

Ethics declarations

Conflict of interest

RSD has consulted and/or received research support from Naurex, Lilly, Forest, Johnson & Johnson, Taisho, and Sunovion on unrelated projects. CP has consulted and/or received research support from Biohaven, Blackthorn, Teva, and Brainsway on unrelated projects. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Shao, LX., Gerhard, D.M. et al. Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol Psychiatry 26, 1945–1966 (2021). https://doi.org/10.1038/s41380-020-0708-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0708-6

This article is cited by

Search

Quick links