Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR disruption and UK Biobank analysis of a highly conserved polymorphic enhancer suggests a role in male anxiety and ethanol intake

Abstract

Excessive alcohol intake is associated with 5.9% of global deaths. However, this figure is especially acute in men such that 7.6% of deaths can be attributed to alcohol intake. Previous studies identified a significant interaction between genotypes of the galanin (GAL) gene with anxiety and alcohol abuse in different male populations but were unable to define a mechanism. To address these issues the current study analysed the human UK Biobank cohort and identified a significant interaction (n = 115,865; p = 0.0007) between allelic variation (GG or CA genotypes) in the highly conserved human GAL5.1 enhancer, alcohol intake (AUDIT questionnaire scores) and anxiety in men. Critically, disruption of GAL5.1 in mice using CRISPR genome editing significantly reduced GAL expression in the amygdala and hypothalamus whilst producing a corresponding reduction in ethanol intake in KO mice. Intriguingly, we also found the evidence of reduced anxiety-like behaviour in male GAL5.1KO animals mirroring that seen in humans from our UK Biobank studies. Using bioinformatic analysis and co-transfection studies we further identified the EGR1 transcription factor, that is co-expressed with GAL in amygdala and hypothalamus, as being important in the protein kinase C (PKC) supported activity of the GG genotype of GAL5.1 but less so in the CA genotype. Our unique study uses a novel combination of human association analysis, CRISPR genome editing in mice, animal behavioural analysis and cell culture studies to identify a highly conserved regulatory mechanism linking anxiety and alcohol intake that might contribute to increased susceptibility to anxiety and alcohol abuse in men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GAL5.1 is active in Gal expressing cells of the hypothlamus and amygdala and can be rapidly and accurately disrupted using CRISPR genome editing.
Fig. 2: GAL5.1 specifically regulates expression of the Gal gene in the hypothalamus and amygdala but not flanking genes.
Fig. 3: GAL5.1 disruption decreases ethanol intake and modulates anxiety-like behaviour in the novelty suppressed feeding test.
Fig. 4: mGAL5.1 deletion affects sex-specific aspects of anxiety-like behaviour in the open field test and the elevated zero maze.
Fig. 5: EGR1 interaction and modulation of the PKC response varies with GAL5.1 genotype.

Similar content being viewed by others

References

  1. Smith JP, Randall CL. Anxiety and alcohol use disorders: comorbidity and treatment considerations. Alcohol Res. 2012;34:414–31.

    PubMed  PubMed Central  Google Scholar 

  2. Rada P, Avena NM, Leibowitz SF, Hoebel BG. Ethanol intake is increased by injection of galanin in the paraventricular nucleus and reduced by a galanin antagonist. Alcohol. 2004;33:91–7.

    Article  CAS  PubMed  Google Scholar 

  3. Barson JR, Morganstern I, Leibowitz SF. Galanin and consummatory behavior: special relationship with dietary fat, alcohol and circulating lipids. EXS. 2011;102:87–111.

    Google Scholar 

  4. Juhasz G, Hullam G, Eszlari N, Gonda X, Antal P, Anderson IM, et al. Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci USA. 2014;111:E1666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belfer I, Hipp H, McKnight C, Evans C, Buzas B, Bollettino A, et al. Association of galanin haplotypes with alcoholism and anxiety in two ethnically distinct populations. Mol Psychiatry. 2006;11:301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Visel A, Bristow J, Pennacchio LA. Enhancer identification through comparative genomics. Semin Cell Dev Biol. 2007;18:140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dogan N, Wu W, Morrissey CS, Chen KB, Stonestrom A, Long M, et al. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics Chromatin. 2015;8:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Davidson S, Lear M, Shanley L, Hing B, Baizan-Edge A, Herwig A, et al. Differential activity by polymorphic variants of a remote enhancer that supports galanin expression in the hypothalamus and amygdala: implications for obesity, depression and alcoholism. Neuropsychopharmacology. 2011;36:2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nikolova YS, Singhi EK, Drabant EM, Hariri AR. Reward-related ventral striatum reactivity mediates gender-specific effects of a galanin remote enhancer haplotype on problem drinking. Genes Brain Behav. 2013;12:516–24.

    Article  CAS  PubMed  Google Scholar 

  10. Richardson TG, Minica C, Heron J, Tavare J, MacKenzie A, Day I, et al. Evaluating the role of a galanin enhancer genotype on a range of metabolic, depressive and addictive phenotypes. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:654–64.

    Article  PubMed  CAS  Google Scholar 

  11. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on ~500,000 UK Biobank participants. 2017. https://doi.org/10.1101/166298.

  14. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants. BJPsych Open. 2018;4:83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Babor TF. The alcohol use disorders identification test—guidelines for use in primary care. World Health Organisation—Department of Mental Health and Substance Dependence 2001: Geneva, Switzerland; 1991.

  17. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Me Research Team tSUDWGotPGC, Adams MJ, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2019;176:107–18.

    Article  PubMed  Google Scholar 

  18. Hay EA, McEwan A, Wilson D, Barrett P, D’Agostino G, Pertwee RG, et al. Disruption of an enhancer associated with addictive behaviour within the cannabinoid receptor-1 gene suggests a possible role in alcohol intake, cannabinoid response and anxiety-related behaviour. Psychoneuroendocrinology. 2019;109:104407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014;83:15.1.7.1–27.

  20. Nagy KV, Behringer R. Manipulating the mouse embryo. 3rd ed. Cold Spring Harbor: Cold Spring Harbor laboratory Press; 2003.

  21. Mercer JG, Lawrence CB, Atkinson T. Regulation of galanin gene expression in the hypothalamic paraventricular nucleus of the obese Zucker rat by manipulation of dietary macronutrients. Brain Res Mol Brain Res. 1996;43:202–8.

    Article  CAS  PubMed  Google Scholar 

  22. Neuroscience EJo. Isolation of adult mouse hippocampus. Neuroscience EJo: Geneva, Switzerland; 2014.

  23. Udvari EB, Volgyi K, Gulyassy P, Dimen D, Kis V, Barna J, et al. Synaptic proteome changes in the hypothalamus of mother rats. J Proteomics. 2017;159:54–66.

    Article  CAS  PubMed  Google Scholar 

  24. Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R, et al. Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci USA. 2005;102:10357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shanley L, Lear M, Davidson S, Ross R, MacKenzie A. Evidence for regulatory diversity and auto-regulation at the TAC1 locus in sensory neurones. J Neuroinflammation. 2011;8:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shanley L, Davidson S, Lear M, Thotakura AK, McEwan IJ, Ross RA, et al. Long-range regulatory synergy is required to allow control of the TAC1 locus by MEK/ERK signalling in sensory neurones. Neurosignals. 2010;18:173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C. Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem. 2003;84:698–704.

    Article  CAS  PubMed  Google Scholar 

  28. Tordoff MG, Bachmanov AA. Mouse taste preference tests: why only two bottles? Chem Senses. 2003;28:315–24.

    Article  PubMed  Google Scholar 

  29. Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44.

    Article  CAS  PubMed  Google Scholar 

  30. Turner S, Mota N, Bolton J, Sareen J. Self-medication with alcohol or drugs for mood and anxiety disorders: A narrative review of the epidemiological literature. Depress Anxiety. 2018;35:851–60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hay EA, Khalaf AR, Marini P, Brown A, Heath K, Sheppard D et al. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides. 2016;64:101–7.

    Article  PubMed  CAS  Google Scholar 

  32. Crawley JN. What’s wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. 2nd ed. Hoboken, NJ: Wiley-Interscience; 2007. p. 523. xvi.

  33. Mackenzie A, Miller KA, Collinson JM. Is there a functional link between gene interdigitation and multi-species conservation of synteny blocks? Bioessays. 2004;26:1217–24.

    Article  CAS  PubMed  Google Scholar 

  34. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol. 2019;1916:99–103.

    Article  CAS  PubMed  Google Scholar 

  36. Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT. Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology. 1994;116:56–64.

    Article  CAS  PubMed  Google Scholar 

  37. Huang J, Jiang W, Yuan D. Functional profiling of immediate early gene Egr1 in an anorexic mouse model. Mol Med Rep. 2013;8:1563–9.

    Article  CAS  PubMed  Google Scholar 

  38. WHO. Global status report on alcohol and health 2014. WHO: Geneva, Switzerland; 2014.

  39. Pacek LR, Storr CL, Mojtabai R, Green KM, La Flair LN, Alvanzo AA et al. Comorbid alcohol dependence and anxiety disorders: a national survey. J Dual Diagn. 2013;9:1–16.

    Article  Google Scholar 

  40. Karatayev O, Baylan J, Weed V, Chang S, Wynick D, Leibowitz SF. Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake. Alcohol Clin Exp Res. 2010;34:72–80.

    Article  CAS  PubMed  Google Scholar 

  41. Belknap JK, Crabbe JC, Young ER. Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology. 1993;112:503–10.

    Article  CAS  PubMed  Google Scholar 

  42. de Brouwer G, Fick A, Harvey BH, Wolmarans W. A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. Cogn Affect Behav Neurosci. 2019;19:1–39.

    Article  PubMed  Google Scholar 

  43. Blasco-Serra A, Gonzalez-Soler EM, Cervera-Ferri A, Teruel-Marti V, Valverde-Navarro AA. A standardization of the novelty-suppressed feeding test protocol in rats. Neurosci Lett. 2017;658:73–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol. 2013;6:126–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X, Cheng X. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 2014;28:2304–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wilce PA, Depaz I, Hardy P, Davidson M, Jaquet V. Ethanol-related adaptive changes and physical dependence in rats after exposure to ethanol. Alcohol. 2001;24:137–9.

    Article  CAS  PubMed  Google Scholar 

  47. Xu S, Kang UG. Characteristics of ethanol-induced behavioral sensitization in rats: Molecular mediators and cross-sensitization between ethanol and cocaine. Pharmacol Biochem Behav. 2017;160:47–54.

    Article  CAS  PubMed  Google Scholar 

  48. Lee KM, Coehlo M, McGregor HA, Waltermire RS, Szumlinski KK. Binge alcohol drinking elicits persistent negative affect in mice. Behav Brain Res. 2015;291:385–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lesscher HM, Wallace MJ, Zeng L, Wang V, Deitchman JK, McMahon T, et al. Amygdala protein kinase C epsilon controls alcohol consumption. Genes Brain Behav. 2009;8:493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hodge CW, Raber J, McMahon T, Walter H, Sanchez-Perez AM, Olive MF, et al. Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cepsilon. J Clin Investig. 2002;110:1003–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Borglum AD, Breen G, et al. Psychiatric genomics: an update and an agenda. Am J Psychiatry. 2018;175:15–27.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Wenlong Huang, Giuseppe D’Agostino and the staff of the University of Aberdeen Medical Research Facility for their help and advice with the animal tests. AMcE was funded by BBSRC project grant (BB/N017544/1) and EH was funded by Medical Research Scotland (PhD-719-2013). PB and DW are funded by the Scottish Government Rural and Environment Science and Analytical Services Division to the Rowett Institute. Association studies were conducted using the UK Biobank Resource: application number 4844 and was supported by a Wellcome Trust Strategic Award ‘Stratifying Resilience and Depression Longitudinally’ (STRADL) (Reference 104036/Z/14/Z). Dedicated to the memory of my dear brother Angus MacKenzie (1963–2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alasdair MacKenzie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEwan, A.R., Davidson, C., Hay, E. et al. CRISPR disruption and UK Biobank analysis of a highly conserved polymorphic enhancer suggests a role in male anxiety and ethanol intake. Mol Psychiatry 26, 2263–2276 (2021). https://doi.org/10.1038/s41380-020-0707-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0707-7

This article is cited by

Search

Quick links