Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Striatal dopamine D2-type receptor availability and peripheral 17β-estradiol

Abstract

Research using rodent models has established a relationship between the steroid hormone estrogen and dopamine function, by revealing changes throughout the estrous cycle and by directly manipulating neuroendocrine signaling through ovariectomy and administration of estrogen. However, a direct link between estrogen levels and dopamine signaling had not been established in humans. The goal of this study, therefore, was to assess the relationship between circulating 17β-estradiol and dopamine signaling in the human brain by testing for a relationship between two proxies for these variables: peripheral 17β-estradiol and striatal dopamine D2-type receptor availability, measured with [18F]fallypride and positron emission tomography (PET). Sixteen (23–45 years of age) women were tested on 2 days of the menstrual cycle estimated prospectively to occur during (a) the early follicular phase, when estrogen levels are near their nadir, and (b) the periovulatory phase, when estrogen levels peak. PET scans with [18F]fallypride were performed on these 2 days, and serum 17β-estradiol was measured using radioimmunoassay. Dopamine D2-type receptor availability did not differ significantly in the whole striatum or the caudate, putamen, or accumbens subregions during the high-estrogen vs. the low-estrogen phases of the menstrual cycle. We conclude that circulating estrogen levels do not affect dopamine D2-type receptor availability in the human striatum although other indices of dopaminergic function may be affected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CONSORT diagram graphically depicting the overall flow of the study.
Fig. 2: Serum 17β-estradiol levels for each participant, each session, are depicted here.
Fig. 3: BPND values for each subject, each session, are shown here.

Similar content being viewed by others

References

  1. Gillies GE, Pienaar IS, Vohra S, Qamhawi Z. Sex differences in Parkinson’s disease. Front Neuroendocrinol. 2014;35:370–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shulman LM, Bhat V. Gender disparities in Parkinson’s disease. Expert Rev Neurother. 2006;6:407–16.

    Article  CAS  PubMed  Google Scholar 

  3. Smith KM, Dahodwala N. Sex differences in Parkinson’s disease and other movement disorders. Exp Neurol. 2014;259:44–56.

    Article  CAS  PubMed  Google Scholar 

  4. SAMHSA. Key substance use and mental health indicators in the United States: results from the 2018 National Survey on Drug Use and Health. 2019;1–39.

  5. Smith PH, Bessette AJ, Weinberger AH, Sheffer CE, McKee SA. Sex/gender differences in smoking cessation: a review. Preventive Med. 2016;92:135–40.

    Article  Google Scholar 

  6. Foster KT, Hicks BM, Iacono WG, McGue M. Gender differences in the structure of risk for alcohol use disorder in adolescence and young adulthood. Psychol Med. 2015;45:3047–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Griffin ML, Bennett HE, Fitzmaurice GM, Hill KP, Provost SE, Weiss RD. Health-related quality of life among prescription opioid-dependent patients: results from a multi-site study. Am J Addict. 2015;24:308–14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Becker JB, Perry AN, Westenbroek C. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol Sex Differ. 2012;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bobzean SAM, DeNobrega AK, Perrotti LI. Sex differences in the neurobiology of drug addiction. Exp Neurol. 2014;259:64–74.

    Article  CAS  PubMed  Google Scholar 

  10. Becker JB. Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci Lett. 1990;118:169–71.

    Article  CAS  PubMed  Google Scholar 

  11. Becker JB, Beer ME. The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav Brain Res. 1986;19:27–33.

    Article  CAS  PubMed  Google Scholar 

  12. Becker JB, Rudick CN. Rapid effects of estrogen or progesterone on the amphetamine-induced increase in striatal dopamine are enhanced by estrogen priming: a microdialysis study. Pharm Biochem Behav. 1999;64:53–7.

    Article  CAS  Google Scholar 

  13. Di Paolo T, Bédard PJ, Dupont A, Poyet P, Labrie F. Effects of estradiol on intact and denervated striatal dopamine receptors and on dopamine levels: a biochemical and behavioral study. Can J Physiol Pharm. 1982;60:350–7.

    Article  Google Scholar 

  14. Dupont A, Di Paolo T, Gagné B, Barden N. Effects of chronic estrogen treatment on dopamine concentrations and turnover in discrete brain nuclei of ovariectomized rats. Neurosci Lett. 1981;22:69–74.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon JH, Borison RL, Diamond BI. Modulation of dopamine receptor sensitivity by estrogen. Biol Psychiatry. 1980;15:389–96.

    CAS  PubMed  Google Scholar 

  16. Hruska RE. Elevation of striatal dopamine receptors by estrogen: dose and time studies. J Neurochem. 1986;47:1908–15.

    Article  CAS  PubMed  Google Scholar 

  17. Hruska RE, Ludmer LM, Pitman KT, De Ryck M, Silbergeld EK. Effects of Estrogen on Striatal Dopamine receptor function in male and female rats. Pharm Biochem Behav. 1982;16:285–91.

    Article  CAS  Google Scholar 

  18. Hruska RE, Nowak MW. Estrogen treatment increases the density of D1 dopamine receptors in the rat striatum. Brain Res. 1988;442:349–50.

    Article  CAS  PubMed  Google Scholar 

  19. Hruska RE, Silbergeld EK. Estrogen treatment enhances dopamine receptor sensitivity in the rat striatum. Eur J Pharm. 1980;61:397–400.

    Article  CAS  Google Scholar 

  20. Luine VN, Richards ST, Wu VY, Beck KD. Estradiol Enhances Learning and Memory in a Spatial Memory Task and Effects Levels of Monoaminergic Neurotransmitters. Hormones Behav. 1998;34:149–62.

    Article  CAS  Google Scholar 

  21. Thompson TL, Moss RL. Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem. 1994;62:1750–6.

    Article  CAS  PubMed  Google Scholar 

  22. Tonnaer JA, Leinders T, van Delft AM. Ovariectomy and subchronic estradiol-17 beta administration decrease dopamine D1 and D2 receptors in rat striatum. Psychoneuroendocrinology. 1989;14:469–76.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, Becker JB. Effects of estrogen agonists on amphetamine-stimulated striatal dopamine release. Synapse. 1998;29:379–91.

    Article  CAS  PubMed  Google Scholar 

  24. Bazzett TJ, Becker JB. Sex differences in the rapid and acute effects of estrogen on striatal D2 dopamine receptor binding. Brain Res. 1994;637:163–72.

    Article  CAS  PubMed  Google Scholar 

  25. Di Paolo T, Falardeau P, Morissette M. Striatal D-2 dopamine agonist binding sites fluctuate during the rat estrous cycle. Life Sci. 1988;43:665–72.

    Article  PubMed  Google Scholar 

  26. Falardeau P, Di, Paolo T. Regional effect of estradiol on rat caudate-putamen dopamine receptors: lateral-medial differences. Neurosci Lett. 1987;74:43–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fernández-Ruiz JJ, Amor JC, Ramos JA. Time-dependent effects of estradiol and progesterone on the number of striatal dopaminergic D2-receptors. Brain Res. 1989;476:388–95.

    Article  PubMed  Google Scholar 

  28. Lammers CH, D’Souza U, Qin ZH, Lee SH, Yajima S, Mouradian MM. Regulation of striatal dopamine receptors by estrogen. Synapse. 1999;34:222–7.

    Article  CAS  PubMed  Google Scholar 

  29. Czoty PW, Riddick NV, Gage HD, Sandridge M, Nader SH, Garg S, et al. Effect of menstrual cycle phase on dopamine D2 receptor availability in female cynomolgus monkeys. Neuropsychopharmacology. 2009;34:548–54.

    Article  CAS  PubMed  Google Scholar 

  30. Pohjalainen Tiina, Rinne JuhaO, Någren Kjell, SyvÄlahti Erkka, Hietala Jarmo. Sex Differences in the Striatal Dopamine D2 Receptor Binding Characteristics in Vivo. Am J Psychiatry. 1998;155:768–73.

    CAS  PubMed  Google Scholar 

  31. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J, et al. Sex Differences in Striatal Dopamine Release in Healthy Adults. Biol Psychiatry. 2006;59:966–74.

    Article  CAS  PubMed  Google Scholar 

  32. Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B, et al. Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: a PET study. Am J Psychiatry. 2006;163:1639–41.

    Article  PubMed  Google Scholar 

  33. Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK, et al. Lack of consistent sex differences in D-amphetamine-induced dopamine release measured with [(18)F]fallypride PET. Psychopharmacol (Berl). 2019;236:581–90.

    Article  CAS  Google Scholar 

  34. Cosgrove KP, Wang S, Kim S-J, McGovern E, Nabulsi N, Gao H, et al. Sex Differences in the Brain’s Dopamine Signature of Cigarette Smoking. J Neurosci. 2014;34:16851–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Urban NBL, Kegeles LS, Slifstein M, Xu X, Martinez D, Sakr E, et al. Sex Differences in Striatal Dopamine Release in Young Adults After Oral Alcohol Challenge: a Positron Emission Tomography Imaging Study With [11C]Raclopride. Biol Psychiatry. 2010;68:689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okita K, Petersen N, Robertson CL, Dean AC, Mandelkern MA, London ED. Sex Differences in Midbrain Dopamine D2-Type Receptor Availability and Association with Nicotine Dependence. Neuropsychopharmacology. 2016;41:2913–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown AK, Mandelkern MA, Farahi J, Robertson C, Ghahremani DG, Sumerel B, et al. Sex differences in striatal dopamine D2/D3 receptor availability in smokers and non-smokers. Int J Neuropsychopharmacol. 2012;15:989–94.

    Article  CAS  PubMed  Google Scholar 

  38. Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C, Deckers H, et al. Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry. 2008;165:507–14.

    Article  PubMed  Google Scholar 

  39. Zakiniaeiz Y, Hillmer AT, Matuskey D, Nabulsi N, Ropchan J, Mazure CM, et al. Sex differences in amphetamine-induced dopamine release in the dorsolateral prefrontal cortex of tobacco smokers. Neuropsychopharmacology. 2019;44:2205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong DF, Broussolle EP, Wand G, Villemagne V, Dannals RF, Links JM, et al. In vivo measurement of dopamine receptors in human brain by positron emission tomography. Age and sex differences. Ann N. Y Acad Sci. 1988;515:203–14.

    Article  CAS  PubMed  Google Scholar 

  41. Nordstrom AL, Olsson H, Halldin CA. PET study of D2 dopamine receptor density at different phases of the menstrual cycle. Psychiatry Res. 1998;83:1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Cumming P, Wong DF, Dannals RF, Gillings N, Hilton J, Scheffel U, et al. The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. Ann N Y Acad Sci. 2002;965:440–50.

    Article  CAS  PubMed  Google Scholar 

  43. Missmer SA, Spiegelman D, Bertone-Johnson ER, Barbieri RL, Pollak MN, Hankinson SE. Reproducibility of Plasma Steroid Hormones, Prolactin, and Insulin-like Growth Factor Levels among Premenopausal Women over a 2- to 3-Year Period. Cancer Epidemiol Biomark amp; Prev. 2006;15:972–8.

    Article  CAS  Google Scholar 

  44. Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL, et al. Determining menstrual phase in human biobehavioral research: a review with recommendations. Exp Clin Psychopharmacol. 2016;24:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guermandi E, Vegetti W, Bianchi MM, Uglietti A, Ragni G, Crosignani P. Reliability of ovulation tests in infertile women. Obstet Gynecol. 2001;97:92–6.

    CAS  PubMed  Google Scholar 

  46. Su H-W, Yi Y-C, Wei T-Y, Chang T-C, Cheng C-M. Detection of ovulation, a review of currently available methods. Bioeng Transl Med. 2017;2:238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Endicott J, Nee J, Harrison W. Daily Record of Severity of Problems (DRSP): reliability and validity. Arch Women’s Ment Health. 2005;9:41–9.

    Article  Google Scholar 

  48. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.

    PubMed  Google Scholar 

  49. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci. 2001;48:24–30.

    Article  Google Scholar 

  50. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  51. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56:907–22.

    Article  PubMed  Google Scholar 

  52. Ishibashi K, Robertson CL, Mandelkern MA, Morgan AT, London ED. The simplified reference tissue model with 18F-fallypride positron emission tomography: choice of reference region. Mol Imaging. 2013;12;1–9.

  53. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.

    Article  CAS  PubMed  Google Scholar 

  54. JASP Team. JASP (Version 0.14.1)[Computer software] 2020.

  55. Best SE, Sarrel PM, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, et al. Striatal dopamine transporter availability with [123I]β-CIT SPECT is unrelated to gender or menstrual cycle. Psychopharmacology. 2005;183:181–9.

    Article  CAS  PubMed  Google Scholar 

  56. Paolo ThérèseDi. Modulation of Brain Dopamine Transmission by Sex Steroids. Rev Neurosci. 1994;5:27.

    Article  PubMed  Google Scholar 

  57. Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46:170–88.

    Article  CAS  PubMed  Google Scholar 

  58. Hruska R, Silbergeld E. Increased dopamine receptor sensitivity after estrogen treatment using the rat rotation model. Science. 1980;208:1466–8.

    Article  CAS  PubMed  Google Scholar 

  59. Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M. The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res. 2010;1321:51–9.

    Article  CAS  PubMed  Google Scholar 

  60. Keysers C, Gazzola V, Wagenmakers E-J. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat Neurosci. 2020;23:788–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was made possible by the dedicated contributions of support staff including Maritza Johnson and Will Chu, and undergraduate student researchers including Brendan Bych, Sabina Fridman, and Jacqueline Rohde.

Funding

This work was supported by F32DA039715 (NP), the Marjorie Greene Family Trust, and the Thomas P and Katherine K Pike Chair in Addiction Studies (EDL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole Petersen or Edythe D. London.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, N., Rapkin, A.J., Okita, K. et al. Striatal dopamine D2-type receptor availability and peripheral 17β-estradiol. Mol Psychiatry 26, 2038–2047 (2021). https://doi.org/10.1038/s41380-020-01000-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-01000-1

This article is cited by

Search

Quick links