Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites

Abstract

Growing evidence suggests that a dysregulation of the kynurenine pathway (KP) occurs in bipolar disorder (BD). This systematic review and meta-analysis aimed at assessing the possible differences in peripheral blood levels of KP metabolites between individuals with BD and healthy controls. We searched Medline, Embase, and PsycInfo electronic databases for articles indexed up to February 2020. We included any observational study comparing the peripheral blood levels of at least one KP metabolite between adults with BD and healthy controls. Random-effects meta-analyses were carried out generating pooled standardized mean differences (SMDs). Heterogeneity between studies was estimated using the I2 index. Meta-regression and sensitivity analyses were conducted. Sixteen studies met inclusion criteria and were included in our study. Meta-analyses showed that individuals with BD have lower peripheral blood levels of tryptophan (SMD = −0.29), kynurenine (SMD = −0.28), kynurenic acid (SMD = −0.30), and xanthurenic acid (SMD = −0.55), along with lower kynurenic acid to kynurenine (SMD = −0.60) and kynurenic acid to quinolinic acid (SMD = −0.37) ratios, than healthy controls. Individuals with a manic episode showed the greatest reductions in tryptophan levels (SMD = −0.51), whereas kynurenic acid levels were more reduced among subjects in a depressive phase (SMD = −0.70). Meta-regression and sensitivity analyses confirmed our results. The findings of the present meta-analysis support the hypothesis of an abnormality of the KP in BD. Considering the partial inconsistency of the findings and the small-to-medium magnitude of the estimated effect sizes, additional research assessing possible mediators or confounders is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the kynurenine pathway.
Fig. 2: Flow chart of the screening process.
Fig. 3: Effect sizes of the differences in peripheral blood levels of kynurenine pathway metabolites between individuals with bipolar disorder and healthy controls.

Similar content being viewed by others

References

  1. Ferrari AJ, Stockings E, Khoo JP, Erskine HE, Degenhardt L, Vos T, et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016;18:440–50.

    Article  PubMed  Google Scholar 

  2. Carvalho AF, Firth J, Vieta E. Bipolar disorder. N Engl J Med. 2020;383:58–66.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison PJ, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends Neurosci. 2018;41:18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci. 2017;71:77–103.

    Article  PubMed  Google Scholar 

  5. Langan C, McDonald C. Neurobiological trait abnormalities in bipolar disorder. Mol Psychiatry. 2009;14:833–46.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenblat JD. Targeting the immune system in the treatment of bipolar disorder. Psychopharmacology. 2019;236:2909–21.

    Article  CAS  PubMed  Google Scholar 

  7. Sayana P, Colpo G, Simões L, Vayalanellore Giridharan V, Teixeira A, Quevedo J, et al. A systemic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res. 2017;92:160–82.

    Article  PubMed  Google Scholar 

  8. Fujigaki H, Yamamoto Y, Saito K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: focus on cell type differences. Neuropharmacology. 2017;112:264–74.

    Article  CAS  PubMed  Google Scholar 

  9. Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36:426–36.

    Article  CAS  PubMed  Google Scholar 

  10. Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020;25:131–47.

    Article  PubMed  Google Scholar 

  11. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13:465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794.

    Article  PubMed  CAS  Google Scholar 

  13. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, et al. Characterization of the kynurenine pathway in human neurons. J Neurosci. 2007;27:12884–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwarcz R, Stone TW. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology. 2017;112:237–47.

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Ding L, Zhang H, Mellor D, Wu H, Zhao D, et al. The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front Psychiatry. 2018;9:552.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Savitz J, Drevets WC, Smith CM, Victor TA, Wurfel BE, Bellgowan PS, et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology. 2015;40:463e71.

    Article  CAS  Google Scholar 

  18. Fazio F, Lionetto L, Curto M, Iacovelli L, Cavallari M, Zappulla C, et al. Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci Rep. 2016;5:17799.

    Article  CAS  Google Scholar 

  19. Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, et al. On the biological importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res. 2010;3:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beninger RJ, Colton AM, Ingles JL, Jhamandas K, Boegman RJ. Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience. 1994;61:603–12.

    Article  CAS  PubMed  Google Scholar 

  21. Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356–65.

    Article  CAS  PubMed  Google Scholar 

  22. van den Ameele S, van Nuijs ALN, Lai FY, Schuermans J, Verkerk R, van Diermen L, et al. A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder. Bipolar Disord. 2020;22:59–69.

    Article  PubMed  CAS  Google Scholar 

  23. Kadriu B, Farmer CA, Yuan P, Park LT, Deng ZD, Moaddel R, et al. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0589-8.

  24. Anderson G, Jacob A, Bellivier F, Geoffroy PA. Bipolar disorder: the role of the kynurenine and melatonergic pathways. Curr Pharm Des. 2016;22:987–1012.

    Article  CAS  PubMed  Google Scholar 

  25. Erhardt S, Schwieler L, Imbeault S, Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297–306.

    Article  CAS  PubMed  Google Scholar 

  26. Arnone D, Saraykar S, Salem H, Teixeira A, Dantzer R, Selvaraj S. Role of kynurenine pathway and its metabolites in mood disorders: a systematic review and meta-analysis of clinical studies. Neurosci Biobehav Rev. 2018;92:477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steen NE, Dieset I, Hope S, Vedal TSJ, Smeland OB, Matson W, et al. Metabolic dysfunctions in the kynurenine pathway, noradrenergic and purine metabolism in schizophrenia and bipolar disorders. Psychol Med. 2020;50:595–606.

    Article  PubMed  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lefebvre CJ, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf MI, et al. Chapter 4: Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. editors. Cochrane handbook for systematic reviews of interventions, 2nd ed. Chichester, UK: Wiley; 2019. p. 67–107.

  30. Lipsey M, Wilson D. Practical meta-analysis. Thousand Oaks, CA, USA: Sage; 2001.

    Google Scholar 

  31. Higgins JPT, Li T, Deeks JJ. Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. editors. Cochrane handbook for systematic reviews of interventions, 2nd ed. Chichester, UK: Wiley; 2019. p. 143–76.

  32. Deeks JJ, Higgins JPT, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. editors. Cochrane handbook for systematic reviews of interventions, 2nd ed. Chichester, UK: Wiley; 2019. p. 67–107.

  33. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol. 2008;37:1148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Page MJ, Higgins JPT, Sterne JAC. Chapter 13: Assessing risk of bias due to missing results in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. editors. Cochrane handbook for systematic reviews of interventions, 2nd ed. Chichester, UK: Wiley; 2019. p. 349–74.

  37. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017. https://www.stata.com/.

  38. Aarsland TI, Leskauskaite I, Midttun O, Ulvik A, Ueland PM, Oltedal L, et al. The effect of electroconvulsive therapy (ECT) on serum tryptophan metabolites. Brain Stimul. 2019;12:1135–42.

    Article  PubMed  Google Scholar 

  39. Brundin L, Sellgren CM, Lim CK, Grit J, Pålsson E, Landén M, et al. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Transl Psychiatry. 2016;6:e865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoekstra R, Fekkes D, Loonen AJ, Pepplinkhuizen L, Tuinier S, Verhoeven WM. Bipolar mania and plasma amino acids: increased levels of glycine. Eur Neuropsychopharmacol. 2006;16:71–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee D, Krishnamurthy VB, Millett CE, Reider A, Can A, Groer M, et al. Total sleep time and kynurenine metabolism associated with mood symptom severity in bipolar disorder. Bipolar Disord. 2018;20:27–34.

    Article  PubMed  Google Scholar 

  42. Myint AM, Kim YK, Verkerk R, Park SH, Scharpe S, Steinbusch HW, et al. Tryptophan breakdown pathway in bipolar mania. J Affect Disord. 2007;102:65–72.

    Article  CAS  PubMed  Google Scholar 

  43. Pan JX, Xia JJ, Deng FL, Liang WW, Wu J, Yin BM, et al. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry. 2018;8:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Platzer M, Dalkner N, Fellendorf FT, Birner A, Bengesser SA, Queissner R, et al. Tryptophan breakdown and cognition in bipolar disorder. Psychoneuroendocrinology. 2017;81:144–50.

    Article  CAS  PubMed  Google Scholar 

  45. Poletti S, Myint AM, Schuetze G, Bollettini I, Mazza E, Grillitsch D, et al. Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2018;268:157–68.

    Article  PubMed  Google Scholar 

  46. Poletti S, Melloni E, Aggio V, Colombo C, Valtorta F, Benedetti F, et al. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J Affect Disord. 2019;259:404–12.

    Article  CAS  PubMed  Google Scholar 

  47. Pompili M, Lionetto L, Curto M, Forte A, Erbuto D, Montebovi F, et al. Tryptophan and kynurenine metabolites: are they related to depression? Neuropsychobiology. 2019;77:23–8.

    Article  PubMed  CAS  Google Scholar 

  48. Savitz J, Dantzer R, Wurfel BE, Victor TA, Ford BN, Bodurka J, et al. Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology. 2015;52:200–11.

    Article  CAS  PubMed  Google Scholar 

  49. Sellgren CM, Gracias J, Jungholm O, Perlis RH, Engberg G, Schwieler L, et al. Peripheral and central levels of kynurenic acid in bipolar disorder subjects and healthy controls. Transl Psychiatry. 2019;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yoshimi N, Futamura T, Kakumoto K, Salehi AM, Sellgren CM, Holmen-Larsson J. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin. 2016;5:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meier TB, Drevets WC, Teague TK, Wurfel BE, Mueller SC, Bodurka J, et al. Kynurenic acid is reduced in females and oral contraceptive users: implications for depression. Brain Behav Immun. 2018;67:59–64.

    Article  CAS  PubMed  Google Scholar 

  52. Reininghaus EZ, McIntyre RS, Reininghaus B, Geisler S, Bengesser SA, Lackner N, et al. Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: a preliminary report. Bipolar Disord. 2014;16:432–40.

    Article  CAS  PubMed  Google Scholar 

  53. van den Ameele S, Fuchs D, Coppens V, de Boer P, Timmers M, Sabbe B, et al. Markers of inflammation and monoamine metabolism indicate accelerated aging in bipolar disorder. Front Psychiatry. 2018;9:250.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wurfel BE, Drevets WC, Bliss SA, McMillin JR, Suzuki H, Ford BN, et al. Serum kynurenic acid is reduced in affective psychosis. Transl Psychiatry. 2017;7:e1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Connor TJ, Starr N, O’Sullivan JB, Harkin A. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett. 2008;441:29–34.

    Article  CAS  PubMed  Google Scholar 

  56. Molteni R, Macchi F, Zecchillo C, Dell’Agli M, Colombo E, Calabrese F, et al. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur Neuropsychopharmacol. 2013;23:1645–2655.

    Article  CAS  PubMed  Google Scholar 

  57. Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Träskman-Bendz L, Guillemin GJ, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-d-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015;43:110–7.

    Article  CAS  PubMed  Google Scholar 

  58. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.

    Article  CAS  PubMed  Google Scholar 

  59. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0401-9.

  60. Haroon E, Welle JR, Woolwine BJ, Goldsmith DR, Baer W, Patel T, et al. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacol. 2020;45:998–1007.

    Article  CAS  Google Scholar 

  61. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44:75–83.

    Article  PubMed  Google Scholar 

  62. Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ, USA: LEA; 1988.

  63. Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, et al. Kynurenic acid in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull. 2017;43:764–77.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, et al. Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:16–25.

    Article  CAS  PubMed  Google Scholar 

  65. Bryleva EY, Brundin L. Kynurenine pathway metabolites and suicidality. Neuropharmacology. 2017;112:324–30.

    Article  CAS  PubMed  Google Scholar 

  66. Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Kołosowska K, Lehner M, et al. The kynurenine pathway: a missing piece in the puzzle of valproate action? Neuroscience. 2013;234:135–45.

    Article  CAS  PubMed  Google Scholar 

  67. Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S, et al. Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun. 2011;25:1576–81.

    Article  CAS  PubMed  Google Scholar 

  68. Bartoli F, Carrà G, Crocamo C, Carretta D, Clerici M. Bipolar disorder, schizophrenia, and metabolic syndrome. Am J Psychiatry. 2013;170:927–8.

    Article  PubMed  Google Scholar 

  69. Belvederi Murri M, Prestia D, Mondelli V, Pariante C, Patti S, Olivieri B, et al. The HPA axis in bipolar disorder: Systematic review and meta-analysis. Psychoneuroendocrinology. 2016;63:327–42.

    Article  CAS  PubMed  Google Scholar 

  70. Misiak B, Bartoli F, Carrà G, Małecka M, Samochowiec J, Jarosz K, et al. Chemokine alterations in bipolar disorder: a systematic review and meta-analysis. Brain Behav Immun. 2020. https://doi.org/10.1016/j.bbi.2020.04.013.

  71. Munkholm K, Vinberg M, Vedel Kessing L. Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord. 2013;144:16–27.

    Article  CAS  PubMed  Google Scholar 

  72. Kadriu B, Musazzi L, Henter ID, Graves M, Popoli M, Zarate CA Jr. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int J Neuropsychopharmacol. 2019;22:119–35.

    Article  CAS  PubMed  Google Scholar 

  73. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bartoli F, Riboldi I, Crocamo C, Di Brita C, Clerici M, Carrà G. Ketamine as a rapid-acting agent for suicidal ideation: A meta-analysis. Neurosci Biobehav Rev. 2017;77:232–6.

    Article  CAS  PubMed  Google Scholar 

  76. Bartoli F, Wilkinson ST. Ketamine and esketamine for suicidal ideation: recent progress and practical issues. Aust N Z J Psychiatry. 2020;54:206–7.

    Article  PubMed  Google Scholar 

  77. Park LT, Kadriu B, Gould TD, Zanos P, Greenstein D, Evans JW, et al. Randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol. 2020. https://doi.org/10.1093/ijnp/pyaa025.

  78. Bartoli F, Crocamo C, Carrà G. Cannabis use disorder and suicide attempts in bipolar disorder: a meta-analysis. Neurosci Biobehav Rev. 2019;103:14–20.

    Article  PubMed  Google Scholar 

  79. Haggarty SJ, Karmacharya R, Perlis RH. Advances toward precision medicine for bipolar disorder: mechanisms & molecules. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0831-4.

Download references

Acknowledgements

We thank all the authors of the studies included into the present systematic review and meta-analysis. A special acknowledgement to Tore I. Aarsland (University of Bergen), Maurizio Pompili (Sapienza University of Rome), Carl M. Sellgren (Karolinska Institutet, Stockholm), and Nils E. Steen (University of Oslo) for having provided additional information. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bartoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, F., Misiak, B., Callovini, T. et al. The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites. Mol Psychiatry 26, 3419–3429 (2021). https://doi.org/10.1038/s41380-020-00913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00913-1

This article is cited by

Search

Quick links