Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder

Abstract

Findings from epidemiological studies, biomarker measurements and animal experiments suggest a role for aberrant immune processes in the pathogenesis of major depressive disorder (MDD). Microglia, the resident immune cells of the brain, are likely to play a key role in these processes. Previous post-mortem studies reported conflicting findings regarding microglial activation and an in-depth profiling of those cells in MDD is lacking. The aim of this study was therefore to characterize the phenotype and function of microglia in MDD. We isolated microglia from post-mortem brain tissue of patients with MDD (n = 13–19) and control donors (n = 12–25). Using flow cytometry and quantitative Polymerase Chain Reaction (qPCR), we measured protein and mRNA levels of a panel of microglial markers across four different brain regions (medial frontal gyrus, superior temporal gyrus, thalamus, and subventricular zone). In MDD cases, we found a significant upregulation of CX3CR1 and TMEM119 mRNA expression and a downregulation of CD163 mRNA expression and CD14 protein expression across the four brain regions. Expression levels of microglial activation markers, such as HLA-DRA, IL6, and IL1β, as well as the inflammatory responses to lipopolysaccharide and dexamethasone were unchanged. Our findings suggest that microglia enhance homeostatic functions in MDD but are not immune activated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outline of methods.
Fig. 2: Microglia protein expression profile in major depressive disorder.
Fig. 3: Microglia gene expression profile in major depressive disorder.
Fig. 4: Microglial responses after stimulation with lipopolysaccharide and dexamethasone.

Similar content being viewed by others

Data availability

“Data is available upon request”.

References

  1. WHO. The global burden of disease: 2004 update. Update 2008;2010:146.

    Google Scholar 

  2. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016;17:497–511.

    Article  CAS  PubMed  Google Scholar 

  3. Udina M, Castellví P, Moreno-España J, Navinés R, Valdés M, Forns X, et al. Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. J Clin Psychiatry. 2012;73:1128–38.

    Article  CAS  PubMed  Google Scholar 

  4. Remus JL, Dantzer R. Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol. 2016;19:1–13.

    Article  CAS  Google Scholar 

  5. Andersson NW, Gustafsson LN, Okkels N, Taha F, Cole SW, Munk-Jorgensen P, et al. Depression and the risk of autoimmune disease: A nationally representative, prospective longitudinal study. Psychol Med 2015;45:3559–69.

    Article  CAS  PubMed  Google Scholar 

  6. Andersson NW, Goodwin RD, Okkels N, Gustafsson LN, Taha F, Cole SW, et al. Depression and the risk of severe infections: Prospective analyses on a nationwide representative sample. Int J Epidemiol. 2016. https://doi.org/10.1093/ije/dyv333.

  7. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 2019;49:1958–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40.

    Article  PubMed  Google Scholar 

  9. Yuan N, Chen Y, Xia Y, Dai J, Liu C. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl Psychiatry. 2019;9:1–13.

    Article  CAS  Google Scholar 

  10. Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: Evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry 2017;22:760–73.

    Article  CAS  PubMed  Google Scholar 

  11. Aloisi F. Immune function of microglia. Glia. 2001. https://doi.org/10.1002/glia.1106.

  12. Wake H, Moorhouse AJ, Nabekura J. Functions of microglia in the central nervous system-beyond the immune response. Neuron Glia Biol 2012;7:47–53.

    Article  Google Scholar 

  13. Hammond TR, Robinton D, Stevens B. Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol 2018;34:523–44.

    Article  CAS  PubMed  Google Scholar 

  14. Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: shaping the brain for the future. Prog Neurobiol 2017;149–150:1–20.

    Article  PubMed  Google Scholar 

  15. Singhal G, Baune BT. Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 2017;11:270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu B, Liu J, Wang M, Zhang Y, Li L. From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front Cell Neurosci. 2011;11:305.

    Article  CAS  Google Scholar 

  17. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol. 2006. https://doi.org/10.1007/s00401-006-0090-8.

  18. Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, et al. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci 2016;41:386–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brisch R, Steiner J, Mawrin C, Krzyżanowska M, Jankowski Z, Gos T. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci 2017;267:403–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 2014;42:50–9.

    Article  CAS  PubMed  Google Scholar 

  21. Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, et al. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol 2014;73:880–90.

    Article  PubMed  Google Scholar 

  22. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008;42:151–7.

    Article  PubMed  Google Scholar 

  23. Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 2004;55:563–9.

    Article  PubMed  Google Scholar 

  24. Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999;271:126–8.

    Article  CAS  PubMed  Google Scholar 

  25. Dean B, Gibbons AS, Tawadros N, Brooks L, Everall IP, Scarr E. Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders. Mol Psychiatry 2013;18:767–73.

    Article  CAS  PubMed  Google Scholar 

  26. Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Müller UJ, et al. Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 2015;265:321–9.

    Article  PubMed  Google Scholar 

  27. Suzuki Y, Onodera H, Tago H, Saito R, Ohuchi M, Shimizu M, et al. Altered populations of natural killer cell and natural killer T cell subclasses in myasthenia gravis. J Neuroimmunol 2005;167:186–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dubbelaar ML, Kracht L, Eggen BJL, Boddeke EWGM. The kaleidoscope of microglial phenotypes. Front Immunol 2018;9:1753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Priller J, Prinz M. Targeting microglia in brain disorders. Science 2019;364:32–33.

    Article  CAS  Google Scholar 

  30. Keren-shaul H, Spinrad A, Weiner A, Colonna M, Schwartz M, Amit I, et al. A unique microglia type associated with restricting development of Alzheimer’ s disease article a unique microglia type associated with restricting development of Alzheimer’ s disease. Cell 2017;169:1–15.

    Article  CAS  Google Scholar 

  31. de Haas AH, Boddeke HWGM, Brouwer N, Biber K. Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 2007;55:1374–84.

    Article  PubMed  Google Scholar 

  32. Moore CS, Ase AR, Kinsara A, Rao VTS, Michell-Robinson M, Leong SY, et al. P2Y12 expression and function in alternatively activated human microglia. Neurol Neuroimmunol Neuroinflammation 2015;2:e80.

    Article  Google Scholar 

  33. Melief J, Sneeboer MAM, Litjens M, Ormel PR, Palmen SJMC, Huitinga I, et al. Characterizing primary human microglia: a comparative study with myeloid subsets and culture models. Glia 2016;64:1857–68.

    Article  CAS  PubMed  Google Scholar 

  34. Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: a voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord 2016;199:114–23.

    Article  PubMed  Google Scholar 

  35. Harrison NA. Brain structures implicated in inflammation-associated depression. Curr. Top. Behav. Neurosci. 2017;31:221–48.

    Article  PubMed  CAS  Google Scholar 

  36. Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006;494:415–34.

    Article  PubMed  Google Scholar 

  37. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008. https://doi.org/10.1016/j.stem.2008.07.025.

  38. Miller AH, Maletic V, Raison CL.Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression.Psiquiatr Biol . 2010;17:71–80.

    Article  Google Scholar 

  39. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  40. Böttcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A, Paza E, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019;22:78–90.

    Article  PubMed  CAS  Google Scholar 

  41. Sneeboer MAM, Snijders GJLJ, Berdowski WM, Fernández-Andreu A, van Mierlo HC, Berdenis van Berlekom A, et al. Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry. 2019;9:1–10.

    Article  Google Scholar 

  42. Melief J, Koning N, Schuurman KGK, Van De Garde MMDB, Smolders J, Hoek RRM, et al. Phenotyping primary human microglia: Tight regulation of LPS responsiveness. Glia 2012;60:1506–17.

    Article  PubMed  Google Scholar 

  43. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR.Introduction to meta-analysis.Psychother Res J Soc Psychother Res. 2009;19:421

    Google Scholar 

  44. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 2017;140:1900–13.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suzumura A. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 2013;14:16–20.

    Article  CAS  PubMed  Google Scholar 

  46. Gyoneva S, Hosur R, Gosselin D, Zhang B, Ouyang Z, Cotleur AC, et al. Cx3cr1-deficient microglia exhibit a premature aging transcriptome. Life Sci Alliance. 2019. https://doi.org/10.26508/lsa.201900453.

  47. Gautiar EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012;13:1118–28.

    Article  CAS  Google Scholar 

  48. Moestrup SK, Moller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med. 2004;36:347–54.

    Article  CAS  PubMed  Google Scholar 

  49. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013;16:1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science 2017;356:1248–59.

    Article  CAS  Google Scholar 

  53. Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 2015;3:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lewis ND, Hill JD, Juchem KW, Stefanopoulos DE, Modis LK. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol 2014;277:26–38.

    Article  CAS  PubMed  Google Scholar 

  55. Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, et al. Identification of a microglia phenotype supportive of remyelination. Glia 2012;60:306–21.

    Article  PubMed  Google Scholar 

  56. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566–81.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiu IM, Morimoto ETA, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4:385–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Orre M, Kamphuis W, Osborn LM, Jansen AHP, Kooijman L, Bossers K, et al. Isolation of glia from Alzheimer’s mice reveals inflammation anddysfunction. Neurobiol Aging 2014;35:2746–60.

    Article  CAS  PubMed  Google Scholar 

  59. Martin E, Boucher C, Fontaine B, Delarasse C Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell. 2017. https://doi.org/10.1111/acel.12522.

  60. Pey P, Pearce RKB, Kalaitzakis ME, Griffin WST, Gentleman SM. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun. 2014;2:21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wesseling H, Gottschalk MG, Bahn S. Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders. Int J Neuropsychopharmacol. 2015;18:1–13.

    Article  CAS  Google Scholar 

  62. Pandey GN, Rizavi HS, Zhang H, Bhaumik R, Ren X. Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J Psychiatry Neurosci 2018;43:376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schiavone S, Neri M, Mhillaj E, Morgese MG, Cantatore S, Bove M, et al. The NADPH oxidase NOX2 as a novel biomarker for suicidality: Evidence from human post mortem brain samples. Transl Psychiatry. 2016;6:e813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Sagar AP, Kéri S Translocator protein (18 kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018. https://doi.org/10.1016/j.pnpbp.2017.12.011.

  65. Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry 2018;83:61–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hannestad J, DellaGioia N, Gallezot JD, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun 2013;33:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Setiawan E, Attwells S, Wilson AA, Mizrahi R, Rusjan PM, Miler L, et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry 2018;5:339–47.

    Article  PubMed  Google Scholar 

  68. Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 2017;37:2679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sneeboer MAM, van der Doef T, Litjens M, Psy NBB, Melief J, Hol EM, et al. Microglial activation in schizophrenia: Is translocator 18 kDa protein (TSPO) the right marker? Schizophr Res. 2020. https://doi.org/10.1016/j.schres.2019.10.045.

  70. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009;29:3974–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011;91:461–553.

    Article  CAS  PubMed  Google Scholar 

  72. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Li Y, Eyo UB, Chen T, Umpierre A, Zhu J, et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. BioRxiv. 2019:557686.

  74. Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Bidlack JM, et al. Noradrenergic signaling in wakeful states inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. BioRxiv. 2019:556480.

  75. Groves JO. Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 2007;12:1079–88.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang X, Zeng L, Yu T, Xu Y, Pu S, Du D, et al. Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation. Cell Physiol Biochem 2014;34:715–23.

    Article  PubMed  CAS  Google Scholar 

  77. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014;19:699–709.

    Article  CAS  PubMed  Google Scholar 

  78. Hinwood M, Morandini J, Day TA, Walker FR. Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 2012;22:1442–54.

    Article  CAS  PubMed  Google Scholar 

  79. Walker F, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013;14:1262–76.

    Article  CAS  PubMed  Google Scholar 

  80. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci 2019;22:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry 2018;23:2192–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-017-0002-4.

  83. Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC, et al. Neurobiological links between depression and AD: the role of TGF-β1 signaling as a new pharmacological target. Pharm Res 2018;130:374–84.

    Article  CAS  Google Scholar 

  84. Ganea K, Menke A, Schmidt MV, Lucae S, Rammes G, Liebl C, et al. Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Transl Psychiatry. 2012;2:e177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tremblay M-È, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010;8:e1000527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015;38:637–58.

    Article  CAS  PubMed  Google Scholar 

  87. Nadjar A, Wigren HKM, Tremblay ME. Roles of microglial phagocytosis and inflammatory mediators in the pathophysiology of sleep disorders. Front Cell Neurosci. 2011;11:250.

    Article  CAS  Google Scholar 

  88. Yin Z, Raj DD, Schaafsma W, Van Der Heijden RA, Kooistra SM, Reijne AC, et al. Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Front Mol Neurosci. 2018;11:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mee-inta Zhao. Kuo. physical exercise inhibits inflammation and microglial activation. Cells 2019;8:691.

    Article  CAS  PubMed Central  Google Scholar 

  90. Hwang J, Zheng LT, Ock J, Lee MG, Kim SH, Lee HW, et al. Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology. 2008. https://doi.org/10.1016/j.neuropharm.2008.06.045.

  91. Su F, Yi H, Xu L, Zhang Z Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience. 2015. https://doi.org/10.1016/j.neuroscience.2015.02.028.

  92. Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, et al. Antidepressants inhibit interferon-γ-induced microglial production of IL-6 and nitric oxide. Exp Neurol. 2007. https://doi.org/10.1016/j.expneurol.2007.03.022.

  93. Zhang L, Zhang J, You Z Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12.

  94. Nazimek K, Kozlowski M, Bryniarski P, Strobel S, Bryk A, Myszka M, et al. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages. Exp Biol Med 2016;241:1540–50.

    Article  CAS  Google Scholar 

  95. Trojan E, Ślusarczyk J, Chamera K, Kotarska K, Glombik K, Kubera M, et al. The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine–chemokine receptor network: a molecular study in an animal model of depression. Front Pharmacol. 2017;8:779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Iwata M, Ishida H, Kaneko K, Shirayama Y. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine. Pharm Biochem Behav 2016;150–151:138–46.

    Article  CAS  Google Scholar 

  97. Lu Y, Xu X, Jiang T, Jin L, Zhao XD, Cheng JH, et al. Sertraline ameliorates inflammation in CUMS mice and inhibits TNF-α-induced inflammation in microglia cells. Int Immunopharmacol 2019;67:119–28.

    Article  CAS  PubMed  Google Scholar 

  98. Shin H, Kim J, Song JH. Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur J Pharmacol 2015;755:74–9.

    Article  CAS  PubMed  Google Scholar 

  99. Cotel MC, Lenartowicz EM, Natesan S, Modo MM, Cooper JD, Williams SCR, et al. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol 2015;25:2098–107.

    Article  CAS  PubMed  Google Scholar 

  100. Jiang L, Wu X, Wang S, Chen SH, Zhou H, Wilson B, et al. Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. J Neuroinflammation. 2016;13:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ha SK, Shobha D, Moon E, Chari MA, Mukkanti K, Kim SH, et al. Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorg Med Chem Lett 2010;20:3969–71.

    Article  CAS  PubMed  Google Scholar 

  102. Wilms H, Claasen J, Röhl C, Sievers J, Deuschl G, Lucius R. Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: Evidence from activated microglial cells in vitro. Neurobiol Dis 2003;14:417–24.

    Article  CAS  PubMed  Google Scholar 

  103. Li WW, Irvine KA, Sahbaie P, Guo TZ, Shi XY, Tawfik VL, et al. Morphine exacerbates postfracture nociceptive sensitization, functional impairment, and microglial activation in mice. Anesthesiology 2019;130:292–308.

    Article  CAS  PubMed  Google Scholar 

  104. Mizee MR, Miedema SSM, van der Poel M, Adelia, Schuurman KG, van Strien ME, et al. Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathol Commun 2017;5:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018;217:459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124.

    Google Scholar 

  107. Streit WJ, Xue QS, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun. 2014;2:142.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the psychiatric donor program of the Netherlands Brain Bank (NBB-Psy), which is supported by the Netherlands Organization for Scientific Research (NWO). GJLJS was supported through the Catharina van Tussenbroek Fund, the Jo Kolk Study fund, and the Prins Bernard Culture Fund. JP was supported by grants from the DFG (SFB/TRR167, 265), BMBF (AERIAL), UK DRI Momentum Award and MS Society. The authors thank the team of the Netherlands Brain Bank for their services and M. Litjes, R.D. van Dijk and Y. He for their help with the microglial isolations and immune response experiments.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Gijsje J. L. J. Snijders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors share first authorship: Gijsje J.L.J. Snijders and Marjolein A.M. Sneeboer

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snijders, G.J.L.J., Sneeboer, M.A.M., Fernández-Andreu, A. et al. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry 26, 3336–3349 (2021). https://doi.org/10.1038/s41380-020-00896-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00896-z

This article is cited by

Search

Quick links