Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo variation in bipolar disorder

Abstract

Bipolar disorder (BD) is a common, highly heritable disorder that affects 1–2% of the world’s population. To date, most genetic studies of BD have focused on common gene variation, and while robustly associated loci have been identified, a substantial proportion of the heritability remains missing and could be partially attributable to rare variation. In this study, we apply a de novo paradigm in BD to identify newly arisen variants that have yet to undergo natural selection and may represent highly pathogenic variants. We performed whole genome sequencing of 97 trios of Ashkenazi Jewish descent, selecting “simplex” families with no family history of BD and an early age of onset. We found a total of 6882 de novo variants (an average of 70.9 ± 12.9 S.D. variants per trio), including 107 variants within protein-coding genes. We combined our exonic variations with the results of 79 previously published BD trios, identifying 20 loss-of-function (LoF) and 77 missense damaging de novo variants in BD. These variants showed significant enrichment for constrained genes and for genes located to the postsynaptic density (PSD) (all Bonferroni corrected p < 0.05). Pathway analyses showed enrichment in several pathways, including “Phosphoinositides (PI) and their downstream targets” (Bonferroni p = 4.2 × 10−6), a pathway prominently featured in lithium’s hypothesized mechanism of action. In addition, while we found overall evidence for transmission of common variant polygenic risk of BD in our full sample (pTDT p = 2.21 × 10−4), specific trios with LoF variants showed no evidence of polygenic transmission. In sum, our findings support the de novo paradigm as a contributor to the genetic architecture of BD and provide evidence that constrained genes, as well as genes within the PSD and PI pathway harbor rare variation associated with BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.

    PubMed  Google Scholar 

  2. Goes FS. Genetics of bipolar disorder. Psychiatr Clin North Am. 2016;39:139–55.

    PubMed  PubMed Central  Google Scholar 

  3. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60:497.

    PubMed  Google Scholar 

  4. Floris M, Olla S, Schlessinger D, Cucca F. Genetic-driven druggable target identification and validation. Trends Genet. 2018;34:558–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Consortium C-DG of the PG, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.

    CAS  PubMed  Google Scholar 

  6. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Robinson MR, Wray NR, Visscher PM. Explaining additional genetic variation in complex traits. Trends Genet. 2014;30:124–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wainschtein P, Jain DP, Yengo L, Zheng Z, Cupples LA, TOPMed Anthropometry Working Group T-O for PMC, et al. Recovery of trait heritability from whole genome sequence data. 2019; 588020. https://doi.org/10.1101/588020.

  9. Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016;17:241.

    PubMed  PubMed Central  Google Scholar 

  10. Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. 2019;570:71–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Study DDD, McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Google Scholar 

  13. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, Rubeis S De, An J-Y, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. 2019; 484113. https://doi.org/10.1101/484113.

  14. Howrigan D, Rose SA, Samocha KE, Fromer M, Cerrato F, Chen WJ, et al. Schizophrenia risk conferred by protein-coding de novo mutations. 2018; 495036. https://doi.org/10.1101/495036.

  15. Rees E, Han J, Morgan J, Carrera N, Escott-Price V, Pocklington AJ, et al. Analyses of rare and common alleles in parent-proband trios implicate rare missense variants in SLC6A1 in schizophrenia and confirm the involvement of loss of function intolerant and neurodevelopmental disorder genes. 2019; 607549. https://doi.org/10.1101/607549.

  16. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19:571–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet. 2014;10:e1004229.

    PubMed  PubMed Central  Google Scholar 

  18. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci USA. 2015;112:3576–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S, et al. Exome sequencing of familial bipolar disorder. JAMA Psychiatry. 2016;13:537–51.

    Google Scholar 

  20. Toma C, Shaw AD, Allcock RJN, Heath A, Pierce KD, Mitchell PB, et al. An examination of multiple classes of rare variants in extended families with bipolar disorder. Transl Psychiatry. 2018;8:65.

    PubMed  PubMed Central  Google Scholar 

  21. Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Långström N, Hultman CM. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65:1034–40.

    PubMed  Google Scholar 

  22. Grigoroiu-Serbanescu M, Wickramaratne PJ, Mihailescu R, Prelipceanu D, Sima D, Codreanu M, et al. Paternal age effect on age of onset in bipolar I disorder is mediated by sex and family history. Am J Med Genet Part B Neuropsychiatr Genet. 2012;159 B:567–79.

    Google Scholar 

  23. de Kluiver H, Buizer-Voskamp JE, Dolan CV, Boomsma DI. Paternal age and psychiatric disorders: a review. Am J Med Genet Part B Neuropsychiatr Genet. 2017;174:202–13.

    Google Scholar 

  24. Power RA, Kyaga S, Uher R, MacCabe JH, Långström N, Landen M, et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry. 2013;70:22.

    PubMed  Google Scholar 

  25. Tondo L, Lepri B, Baldessarini RJ. Reproduction among 1975 Sardinian women and men diagnosed with major mood disorders. Acta Psychiatr Scand. 2011;123:283–9.

    CAS  PubMed  Google Scholar 

  26. Tondo L, Baldessarini RJ. Fertility rates in patients with mood disorder in Sweden and Sardinia. JAMA Psychiatry. 2013;70:1115.

    PubMed  Google Scholar 

  27. Kataoka M, Matoba N, Sawada T, Kazuno A-A, Ishiwata M, Fujii K, et al. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol Psychiatry. 2016;21:885–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M, et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet. 2017;49:504–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, et al. Bipolar I disorder and schizophrenia: a 440–single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 2005;77:918–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson EB, Samocha KE, Kosmicki JA, McGrath L, Neale BM, Perlis RH, et al. Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proc Natl Acad Sci USA. 2014;111:15161–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet. 2004;75:204–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    PubMed  PubMed Central  Google Scholar 

  35. Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature. 2017;549:519–22.

    PubMed  Google Scholar 

  36. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012;13:762–75.

    PubMed  PubMed Central  Google Scholar 

  38. Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.

    PubMed  PubMed Central  Google Scholar 

  41. An J-Y, Lin K, Zhu L, Werling DM, Dong S, Brand H, et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. 2018;362:eaat6576.

    PubMed  PubMed Central  Google Scholar 

  42. Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7.

    PubMed  Google Scholar 

  43. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362:eaat8464.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. 2019; 531210. https://doi.org/10.1101/531210.

  47. Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46:944–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ware JS, Samocha KE, Homsy J, Daly MJ, Ware JS, Samocha KE, et al. Interpreting de novo variation in human disease using denovolyzeR. In Current protocols in human genetics. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015. p. 7.25.1–15.

  49. Li T, Kim A, Rosenbluh J, Horn H, Greenfeld L, An D, et al. GeNets: a unified web platform for network-based genomic analyses. Nat Methods. 2018;15:543–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.

    PubMed  PubMed Central  Google Scholar 

  52. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    PubMed  PubMed Central  Google Scholar 

  53. Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA, Grove J, et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet. 2017;49:978–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Werling DM, Brand H, An J-Y, Stone MR, Zhu L, Glessner JT, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018;50:727–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    Google Scholar 

  56. Turner TN, Yi Q, Krumm N, Huddleston J, Hoekzema K, F. Stessman HA, et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 2017;45:D804–D811.

    CAS  PubMed  Google Scholar 

  57. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat Methods. 2016;14:61–64.

    PubMed  PubMed Central  Google Scholar 

  58. Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989;59:411–9.

    CAS  PubMed  Google Scholar 

  59. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012;17:142–53.

    CAS  PubMed  Google Scholar 

  60. Akula N, Wendland JR, Choi KH, McMahon FJ. An integrative genomic study implicates the postsynaptic density in the pathogenesis of bipolar disorder. Neuropsychopharmacology. 2016;41:886–95.

    CAS  PubMed  Google Scholar 

  61. Föcking M, Dicker P, Lopez LM, Hryniewiecka M, Wynne K, English JA, et al. Proteomic analysis of the postsynaptic density implicates synaptic function and energy pathways in bipolar disorder. Transl Psychiatry. 2016;6:e959–e959.

    PubMed  PubMed Central  Google Scholar 

  62. Falkenburger BH, Jensen JB, Dickson EJ, Suh B-C, Hille B. Phosphoinositides: lipid regulators of membrane proteins. J Physiol. 2010;588:3179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schink KO, Tan K-W, Stenmark H. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol. 2016;32:143–71.

    CAS  PubMed  Google Scholar 

  64. Allison JH, Stewart MA. Reduced brain inositol in lithium-treated rats. Nat New Biol. 1971;233:267–8.

    CAS  PubMed  Google Scholar 

  65. Zeitschel U, Bigl M, Eschrich K, Bigl V. Cellular distribution of 6-phosphofructo-1-kinase isoenzymes in rat brain. J Neurochem. 2002;67:2573–80.

    Google Scholar 

  66. Al-Ali H, Ding Y, Slepak T, Wu W, Sun Y, Martinez Y, et al. The mTOR substrate S6 kinase 1 (S6K1) is a negative regulator of axon regeneration and a potential drug target for central nervous system injury. J Neurosci. 2017;37:7079–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang YR, Jung JH, Kim S-J, Hamada K, Suzuki A, Kim HJ, et al. Forebrain-specific ablation of phospholipase Cγ1 causes manic-like behavior. Mol Psychiatry. 2017;22:1473–82.

    CAS  PubMed  Google Scholar 

  68. Charney AW, Stahl EA, Green EK, Chen CY, Moran JL, Chambert K, et al. Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases. Biol Psychiatry. 2019;86:110–9.

    CAS  PubMed  Google Scholar 

  69. Ruzzo EK, Pérez-Cano L, Jung J-Y, Wang L, Kashef-Haghighi D, Hartl C, et al. Inherited and de novo genetic risk for autism impacts shared networks. Cell. 2019;178:850–.e26.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by NIMH grant R00MH86049 to FSG, and MH057314 and MH068406 to AEP. We thank the participating families for their generous contribution to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando S. Goes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goes, F.S., Pirooznia, M., Tehan, M. et al. De novo variation in bipolar disorder. Mol Psychiatry 26, 4127–4136 (2021). https://doi.org/10.1038/s41380-019-0611-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0611-1

This article is cited by

Search

Quick links