Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

T-ALL can evolve to oncogene independence

Abstract

The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL driven by the oncogenic transcription factor Lmo2. This revealed that whilst thymus-resident pre-Leukemic Stem Cells (pre-LSCs) required continuous Lmo2 expression, the majority of leukemias relapsed despite Lmo2 withdrawal. Relapse was associated with a mature phenotype and frequent mutation or loss of tumor suppressor genes including Ikzf1 (Ikaros), with targeted deletion Ikzf1 being sufficient to transform Lmo2-dependent leukemias to Lmo2-independence. Moreover, we found that the related transcription factor TAL1 was dispensable in several human T-ALL cell lines that contain SIL-TAL1 chromosomal deletions driving its overexpression, indicating that evolution to oncogene independence can also occur in human T-ALL. Together these results indicate an evolution of oncogene addiction in murine and human T-ALL and show that loss of Ikaros is a mechanism that can promote self-renewal of T-ALL lymphoblasts in the absence of an initiating oncogenic transcription factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A regulatable model of Lmo2-driven T-cell leukemogenesis.
Fig. 2: Silencing Lmo2 expression overcomes the Lmo2-induced T-cell developmental block.
Fig. 3: Silencing Lmo2 expression eliminates self-renewing pre-LSCs.
Fig. 4: Lmo2 induces Lmo2-dependent, Evolving and Lmo2-independent T-ALL.
Fig. 5: Lmo2-dependence is associated with an immature (ETP-like) gene expression profile.
Fig. 6: Genomic analysis of Lmo2-dependent, evolving, and Lmo2-independent leukemias.
Fig. 7: Ikzf1 loss promotes evolution to Lmo2-independence.
Fig. 8: Deletion of TAL1 is tolerated in several human T-ALL cell lines.

Similar content being viewed by others

References

  1. Weinstein IB. Cancer. addiction to oncogenes–the Achilles heal of cancer. Science. 2002;297:63–64.

    Article  CAS  PubMed  Google Scholar 

  2. Jonkers J, Berns A. Conditional mouse models of sporadic cancer. Nat Rev Cancer. 2002;2:251–65.

    Article  CAS  PubMed  Google Scholar 

  3. Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999;4:199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Jonkers J, Berns A. Oncogene addiction: sometimes a temporary slavery. Cancer Cell. 2004;6:535–8.

    CAS  PubMed  Google Scholar 

  5. Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood. 2003;101:2797–803.

    Article  CAS  PubMed  Google Scholar 

  6. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35:975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J, et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108:3520–9.

    Article  PubMed  CAS  Google Scholar 

  9. Wu L, Xu Y, Wang Q, Ruan C, Drexler HG, Wu D, et al. High frequency of cryptic chromosomal rearrangements involving the LMO2 gene in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100:e233–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.

    Article  CAS  PubMed  Google Scholar 

  11. Jevremovic D, Roden AC, Ketterling RP, Kurtin PJ, McPhail ED. LMO2 is a specific marker of T-Lymphoblastic Leukemia/Lymphoma. Am J Clin Pathol. 2016;145:180–90.

    Article  CAS  PubMed  Google Scholar 

  12. Matthews JM, Lester K, Joseph S, Curtis DJ. LIM-domain-only proteins in cancer. Nat Rev Cancer. 2013;13:111–22.

    Article  CAS  PubMed  Google Scholar 

  13. Chambers J, Rabbitts TH. LMO2 at 25 years: a paradigm of chromosomal translocation proteins. Open Biol. 2015;5:150062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH, et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science. 2010;327:879–83.

    Article  CAS  PubMed  Google Scholar 

  15. Curtis DJ, McCormack MP. The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2010;16:5618–23.

    Article  CAS  PubMed  Google Scholar 

  16. McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ, et al. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood. 2013;122:2093–103.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia-Ramirez I, Bhatia S, Rodriguez-Hernandez G, Gonzalez-Herrero I, Walter C, Gonzalez de Tena-Davila S, et al. Lmo2 expression defines tumor cell identity during T-cell leukemogenesis. EMBO J. 2018;37:e98783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006;44:23–8.

    Article  CAS  PubMed  Google Scholar 

  20. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell. 2011;145:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim WI, Wiesner SM, Largaespada DA. Vav promoter-tTA conditional transgene expression system for hematopoietic cells drives high level expression in developing B and T cells. Exp Hematol. 2007;35:1231–9.

    Article  CAS  PubMed  Google Scholar 

  22. Takiguchi M, Dow LE, Prier JE, Carmichael CL, Kile BT, Turner SJ, et al. Variability of inducible expression across the hematopoietic system of tetracycline transactivator transgenic mice. PLoS ONE. 2013;8:e54009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, et al. Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol. 2017;35:908–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell. 2003;3:551–64.

    Article  CAS  PubMed  Google Scholar 

  25. Kathrein KL, Chari S, Winandy S. Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem. 2008;283:10476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR, et al. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol. 2006;26:209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sontani Y, Chapman G, Papathanasiou P, Dunwoodie S, Goodnow CC, Hoyne GF. Cooperation between somatic Ikaros and Notch1 mutations at the inception of T-ALL. Leuk Res. 2011;35:1512–9.

    Article  CAS  PubMed  Google Scholar 

  28. Witkowski MT, Cimmino L, Hu Y, Trimarchi T, Tagoh H, McKenzie MD, et al. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia. 2015;29:1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C, et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal. 2014;7:ra28.

    Article  PubMed  CAS  Google Scholar 

  30. Chen S, Nagel S, Schneider B, Kaufmann M, Meyer C, Zaborski M, et al. Novel non-TCR chromosome translocations t(3;11)(q25;p13) and t(X;11)(q25;p13) activating LMO2 by juxtaposition with MBNL1 and STAG2. Leukemia. 2011;25:1632–5.

    Article  CAS  PubMed  Google Scholar 

  31. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science. 1990;250:1426–9.

    Article  CAS  PubMed  Google Scholar 

  32. McCormack MP, Curtis DJ. The thymus under siege: Lmo2 induces precancerous stem cells in a mouse model of T-ALL. Cell Cycle. 2010;9:2267–8.

    Article  CAS  PubMed  Google Scholar 

  33. Palomero T, Odom DT, O’Neil J, Ferrando AA, Margolin A, Neuberg DS, et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood. 2006;108:986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64.

    Article  CAS  PubMed  Google Scholar 

  36. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  CAS  PubMed  Google Scholar 

  37. Sun L, Crotty ML, Sensel M, Sather H, Navara C, Nachman J, et al. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 1999;5:2112–20.

    CAS  PubMed  Google Scholar 

  38. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol. 2003;81:171–5.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan T, Yang Y, Chen J, Li W, Li W, Zhang Q, et al. Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia. 2017;31:2355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takanashi M, Yagi T, Imamura T, Tabata Y, Morimoto A, Hibi S, et al. Expression of the Ikaros gene family in childhood acute lymphoblastic leukaemia. Br J Haematol. 2002;117:525–30.

    Article  CAS  PubMed  Google Scholar 

  41. Marcais A, Jeannet R, Hernandez L, Soulier J, Sigaux F, Chan S, et al. Genetic inactivation of Ikaros is a rare event in human T-ALL. Leuk Res. 2010;34:426–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kastner P, Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem. 2011;2:108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43:673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitchell JL, Yankee TM. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia. Ann Transl Med. 2016;4:363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC, et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol. 2003;23:655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L, et al. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J. 2007;26:1670–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M, et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell. 2008;133:727–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dudgeon C, Chan C, Kang W, Sun Y, Emerson R, Robins H, et al. The evolution of thymic lymphomas in p53 knockout mice. Genes Dev. 2014;28:2613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Nieva P, Santos J, Fernandez-Piqueras J. Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in gamma-radiation-induced mouse thymic lymphomas. Carcinogenesis. 2004;25:1299–304.

    Article  CAS  PubMed  Google Scholar 

  50. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell. 1995;83:289–99.

    Article  CAS  PubMed  Google Scholar 

  51. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE, et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marke R, van Leeuwen FN, Scheijen B. The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2018;103:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5:537–49.

    Article  CAS  PubMed  Google Scholar 

  54. Deane JE, Mackay JP, Kwan AH, Sum EY, Visvader JE, Matthews JM. Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4. EMBO J. 2003;22:2224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Vyas P, Patient R, et al. Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. Blood. 2011;117:2146–56.

    Article  CAS  PubMed  Google Scholar 

  56. Appert A, Nam CH, Lobato N, Priego E, Miguel RN, Blundell T, et al. Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res. 2009;69:4784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nam CH, Lobato MN, Appert A, Drynan LF, Tanaka T, Rabbitts TH. An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions. Oncogene. 2008;27:4962–8.

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka T, Sewell H, Waters S, Phillips SE, Rabbitts TH. Single domain intracellular antibodies from diverse libraries: emphasizing dual functions of LMO2 protein interactions using a single VH domain. J Biol Chem. 2011;286:3707–16.

    Article  CAS  PubMed  Google Scholar 

  59. Milton-Harris L, Jeeves M, Walker SA, Ward SE, Mancini EJ. Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2. Oncotarget. 2020;11:1737–48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Alfred Medical Research and Education Precinct (AMREP) animal services and Walter and Eliza Hall Institute (WEHI) Bioservices and for mouse husbandry, Fiona Waters and the WEHI Central Microinjection Service for transgenic mouse generation and the AMREP and WEHI Flow Cytometry Facilities. We thank Cedric Tremblay for antibodies and discussions and Helen Mitchell and Wei Shi for assistance with RNA sequencing and bioinformatics. We thank Charles de Bock, Chris Riffkin, David Huang and Sandra Mifsud for cell lines. This work was supported by project grants (1003391 and 1104145 to MPM), a Program grant (1113577 to WSA), a Fellowship (1058344 to WSA), and the Independent Research Institute’s Infrastructure Support Scheme from the Australian Government’s National Health and Medical Research Council (NHMRC), the Fund for Scientific Research Flanders (LD and PVV), the Ghent University Research Fund and the European Research Council (StG-639784 to PVV), a grant-in-aid from the Cancer Council of Victoria, a Future Fellowship from the Australian Research Council (MPM) and a Victorian State Government Operational Infrastructure Support grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. McCormack.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulla, H., Vo, A., Shields, B.J. et al. T-ALL can evolve to oncogene independence. Leukemia 35, 2205–2219 (2021). https://doi.org/10.1038/s41375-021-01120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01120-9

Search

Quick links