Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells

Abstract

Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a “splicing-cascade” phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  2. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip Rev RNA. 2015;6:93–110.

    Article  CAS  PubMed  Google Scholar 

  6. Graveley BR, Maniatis T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell. 1998;1:765–71.

    Article  CAS  PubMed  Google Scholar 

  7. Wu JY, Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. 1993;75:1061–70.

    Article  CAS  PubMed  Google Scholar 

  8. Mayeda A, Screaton GR, Chandler SD, Fu XD, Krainer AR. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol Cell Biol. 1999;19:1853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417:15–27.

    Article  CAS  PubMed  Google Scholar 

  10. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC-W, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daubner GM, Cléry A, Jayne S, Stevenin J. Allain FH-T. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012;31:162–74.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci USA. 2015;112:E4726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kon A, Yamazaki S, Nannya Y, Kataoka K, Ota Y, Nakagawa MM, et al. Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Blood. 2018;131:621–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu X-D. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol. 2008;15:819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Müller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 2016;30:553–66.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Änkö M-L, Müller-McNicoll M, Brandl H, Curk T, Gorup C, Henry I, et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol. 2012;13:R17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Änkö M-L. Regulation of gene expression programmes by serine–arginine rich splicing factors. Semin Cell Dev Biol. 2014;32:11–21.

    Article  CAS  PubMed  Google Scholar 

  18. Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol. 2000;20:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandler SD, Mayeda A, Yeakley JM, Krainer AR, Fu XD. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc Natl Acad Sci USA. 1997;94:3596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell. 2013;50:223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu J, Mayeda A, Krainer AR. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell. 2001;8:1351–61.

    Article  CAS  PubMed  Google Scholar 

  22. Bradley T,Cook ME,Blanchette M, SR proteins control a complex network of RNA-processing events. RNA. 2015;21:75–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ule J, Jensen K, Mele A, Darnell RB. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods. 2005;37:376–86.

    Article  CAS  PubMed  Google Scholar 

  24. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science. 2003;302:1212–5.

    Article  CAS  PubMed  Google Scholar 

  25. Stefani G, Chen X, Zhao H, Slack FJ. A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans. RNA. 2015;21:985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN, et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci. 2014;111:E5593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarma NJ, Takeda A, Yaseen NR. Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp. 2010. https://doi.org/10.3791/2195.

  28. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98.

    Article  CAS  PubMed  Google Scholar 

  29. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011;8:559–64.

    Article  CAS  PubMed  Google Scholar 

  30. Granneman S, Kudla G, Petfalski E, Tollervey D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci USA. 2009;106:9613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang C, Darnell RB. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol. 2011;29:607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugimoto Y, König J, Hussain S, Zupan B, Curk T, Frye M, et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 2012;13:R67.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sureau A, Gattoni R, Dooghe Y, Stévenin J, Soret J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 2001;20:1785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dreumont N, Hardy S, Behm-Ansmant I, Kister L, Branlant C, Stévenin J, et al. Antagonistic factors control the unproductive splicing of SC35 terminal intron. Nucleic Acids Res. 2010;38:1353–66.

    Article  CAS  PubMed  Google Scholar 

  35. Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–43.

    Article  CAS  PubMed  Google Scholar 

  36. Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009;19:381–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ankö M-L, Neugebauer KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci. 2012;37:255–62.

    Article  CAS  PubMed  Google Scholar 

  38. Guil S, Gattoni R, Carrascal M, Abián J, Stévenin J, Bach-Elias M. Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation. Mol Cell Biol. 2003;23:2927–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rooke N, Markovtsov V, Cagavi E, Black DL. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol Cell Biol. 2003;23:1874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Expert-Bezançon A, Sureau A, Durosay P, Salesse R, Groeneveld H, Lecaer JP, et al. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B. J Biol Chem. 2004;279:38249–59.

    Article  CAS  PubMed  Google Scholar 

  41. Zahler AM, Damgaard CK, Kjems J, Caputi M. SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J Biol Chem. 2004;279:10077–84.

    Article  CAS  PubMed  Google Scholar 

  42. Han J, Ding J-H, Byeon CW, Kim JH, Hertel KJ, Jeong S, et al. SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol Cell Biol. 2011;31:793–802.

    Article  CAS  PubMed  Google Scholar 

  43. Komeno Y, Huang Y-J, Qiu J, Lin L, Xu Y, Zhou Y, et al. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol Cell Biol. 2015;35:3071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu J, Zhou B, Thol F, Zhou Y, Chen L, Shao C, et al. Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators. RNA. 2016;22:1535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev Rna. 2012;3:1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Han SP, Friend LR, Carson JH, Korza G, Barbarese E, Maggipinto M, et al. Differential subcellular distributions and trafficking functions of hnRNP A2/B1 spliceoforms. Traffic. 2010;11:886–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGlincy NJ, Tan L-Y, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genom. 2010;11:565.

    Article  CAS  Google Scholar 

  48. Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY, et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012;1:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bergeron D, Pal G, Beaulieu YB, Chabot B, Bachand F. Regulated intron retention and nuclear Pre-mRNA decay contribute to PABPN1 autoregulation. Mol Cell Biol. 2015;35:2503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez FJ, Pratt GA, Van Nostrand EL, Batra R, Huelga SC, Kapeli K, et al. Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system. Neuron. 2016;92:780–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obeng EA, Chappell RJ, Seiler M, Chen MC, Campagna DR, Schmidt PJ, et al. Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation. Cancer Cell. 2016;30:404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell. 2015;27:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162:1299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15.

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142(5):787–99. Epub 2010/09/04. doi: 1016/j.cell.2010.07.039. Pubmed PMID: 20813064.

Download references

Acknowledgements

We thank all our patients. We thank all clinicians and clinical staff for their help with patient recruitment. Work was funded in part by the Edward P. Evans Foundation, by the NIH/NIDDK R01DK102792, departmental funds from the Yale Comprehensive Cancer Center (YCCC), and a YCCC pilot grant (to SH). This material is based in part upon work supported by the State of Connecticut under the Regenerative Medicine Research Fund (GS, SH). Its contents are solelythe responsibility of the authors and do not necessarily represent the official views of the State ofConnecticut or Connecticut Innovations, Incorporated. Research reported in this publication was in part supported by the NIDDK under Grant U54DK106857. YL was partially supported by the National Natural Science Foundation of China (Grant No. 81660682). We thank Diane Krause, Manoj Pillai, and Karla Neugebauer (Yale University) for helpful suggestions. We thank the Yale Stem Cell Center Genomics Core and the Yale Center for Genome Analysis (YCGA) for high-throughput sequencing and the Yale University High Performance Computing Center for use of clusters to run bioinformatics analysis. We thank Dr. Tomoyuki Yamaguchi at the Japan Science and Technology Agency for the kind gift of the CS-TRE-Ubc-tTA-I2G plasmid [56]. We also thank Didier Trono for the psPAX2 plasmid (Addgene plasmid # 12260) and Tannishtha Reya for the pCMV-VSVG plasmid (Addgene plasmid # 14888).

Author contributions

:TT analyzed next-generation sequencing data and wrote the manuscript. YL, KR, PJ, and GS performed experiments, analyzed the data, and wrote the manuscript. AT, YS, JM, KB, RV, AA, and AD performed experiments. AQ provided essential input for the manuscript. SH initiated the study, performed experiments, analyzed the data, provided supervision and wrote the manuscript with input from the other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Halene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Yang Liang, Toma Tebaldi, Kai Rejeski, Poorval Joshi, Giovanni Stefani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Tebaldi, T., Rejeski, K. et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia 32, 2659–2671 (2018). https://doi.org/10.1038/s41375-018-0152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0152-7

This article is cited by

Search

Quick links