Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA)

Abstract

Differences in residential location as well as race/ethnicity and dietary habits may result in differences in inorganic arsenic (iAs) exposure. We investigated the association of exposure to iAs with race/ethnicity, geography, and dietary intake in a random sample of 310 White, Black, Hispanic, and Chinese adults in the Multi-Ethnic Study of Atherosclerosis from 6 US cities with inorganic and methylated arsenic (ΣAs) measured in urine. Dietary intake was assessed by food-frequency questionnaire. Chinese and Hispanic race/ethnicity was associated with 82% (95% CI: 46%, 126%) and 37% (95% CI: 10%, 70%) higher urine arsenic concentrations, respectively, compared to White participants. No differences were observed for Black participants compared to Whites. Urine arsenic concentrations were higher for participants in Los Angeles, Chicago, and New York compared to other sites. Participants that ate rice ≥2 times/week had 31% higher urine arsenic compared to those that rarely/never consumed rice. Participants that drank wine ≥2 times/week had 23% higher urine arsenic compared to rare/never wine drinkers. Intake of poultry or non-rice grains was not associated with urinary arsenic concentrations. At the low-moderate levels typical of the US population, exposure to iAs differed by race/ethnicity, geographic location, and frequency of rice and wine intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC). Some drinking water disinfectants and contaminants, including arsenic. Lyon, France; 2002.

  2. Coronado-Gonzalez JA, Del Razo LM, Garcia-Vargas G, Sanmiguel-Salazar F, Escobedo-de la Pena J. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res. 2007;104:383–9.

    Article  CAS  Google Scholar 

  3. Medrano MA, Boix R, Pastor-Barriuso R, Palau M, Damian J, Ramis R, et al. Arsenic in public water supplies and cardiovascular mortality in Spain. Environ Res. 2010;110:448–54.

    Article  CAS  Google Scholar 

  4. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, et al. Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol. 2005;162:1037–49.

    Article  Google Scholar 

  5. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA. 2008;300:814–22.

    Article  CAS  Google Scholar 

  6. Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect. 2006;114:641–8.

    Article  CAS  Google Scholar 

  7. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Selvin S, Liaw J, et al. Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region ii of Chile from 1950 to 2000. Am J Epidemiol. 2007;166:1381–91.

    Article  Google Scholar 

  8. Baris D, Waddell R, Beane Freeman LE, Schwenn M, Colt JS, Ayotte JD, et al. Elevated bladder cancer in Northern New England: the role of drinking water and arsenic. J Natl Cancer Inst. 2016;108:djw099.

  9. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, et al. Rice consumption contributes to arsenic exposure in us women. Proc Natl Acad Sci USA. 2011;108:20656–60.

    Article  CAS  Google Scholar 

  10. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123:305–32.

    Article  CAS  Google Scholar 

  11. Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL. Arsenic, organic foods, and brown rice syrup. Environ Health Perspect. 2012;120:623–6.

    Article  CAS  Google Scholar 

  12. Nordstrom DK. Public health. Worldwide occurrences of arsenic in ground water. Science. 2002;296:2143–5.

    Article  CAS  Google Scholar 

  13. Smith AH, Steinmaus CM. Arsenic in drinking water. BMJ. 2011;342:d2248.

    Article  Google Scholar 

  14. Yager JW, Greene T, Schoof RA. Arsenic relative bioavailability from diet and airborne exposures: implications for risk assessment. Sci Total Environ. 2015;536:368–81.

    Article  CAS  Google Scholar 

  15. Navas-Acien A, Nachman KE. Public health responses to arsenic in rice and other foods. JAMA Intern Med. 2013;173:1395–6.

    Article  Google Scholar 

  16. Tao SS, Bolger PM. Dietary arsenic intakes in the united states: FDA total diet study, September 1991-December 1996. Food Addit Contam. 1999;16:465–72.

    Article  CAS  Google Scholar 

  17. Cottingham KL, Karimi R, Gruber JF, Zens MS, Sayarath V, Folt CL, et al. Diet and toenail arsenic concentrations in a new hampshire population with arsenic-containing water. Nutr J. 2013;12:149.

    Article  Google Scholar 

  18. Herce-Pagliai C, Moreno I, Gonzalez G, Repetto M, Camean AM. Determination of total arsenic, inorganic and organic arsenic species in wine. Food Addit Contam. 2002;19:542–6.

    Article  CAS  Google Scholar 

  19. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003-4 nhanes data. Environ Health Perspect. 2010;118:345–50.

    Article  CAS  Google Scholar 

  20. Joca L, Sacks JD, Moore D, Lee JS, Sams R 2nd, Cowden J. Systematic review of differential inorganic arsenic exposure in minority, low-income, and indigenous populations in the United States. Environ Int. 2016;92-93:707–15.

    Article  CAS  Google Scholar 

  21. Mantha M, Yeary E, Trent J, Creed PA, Kubachka K, Hanley T, et al. Estimating inorganic arsenic exposure from U.S. rice and total water intakes. Environ Health Perspect. 2017;125:057005.

    Article  Google Scholar 

  22. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR. Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012;120:1418–24.

    Article  CAS  Google Scholar 

  23. Wei Y, Zhu J, Nguyen A. Rice consumption and urinary concentrations of arsenic in US adults. Int J Environ Health Res. 2014;24:459–70.

    Article  Google Scholar 

  24. Wu H, Grandjean P, Hu FB, Sun Q. Consumption of white rice and brown rice and urinary inorganic arsenic concentration. Epidemiology. 2015;26:e65–7.

    Article  Google Scholar 

  25. Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health. 2014;47:253–7.

    Article  Google Scholar 

  26. Joseph T, Dubey B, McBean EA. A critical review of arsenic exposures for bangladeshi adults. Sci Total Environ. 2015;527-8:540–51.

    Article  Google Scholar 

  27. Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC. Roxarsone, inorganic arsenic, and other arsenic species in chicken: A U.S.-based market basket sample. Environ Health Perspect. 2013;121:818–24.

    Article  Google Scholar 

  28. Nachman KE, Love DC, Baron PA, Nigra AE, Murko M, Raber G. Nitarsone, inorganic arsenic, and other arsenic species in turkey meat: exposure and risk assessment based on a 2014 U.S. Market basket sample. Environ Health Perspect. 2016;125:363–9.

    Article  Google Scholar 

  29. Ahsan H, Perrin M, Rahman A, Parvez F, Stute M, Zheng Y, et al. Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med. 2000;42:1195–201.

    Article  CAS  Google Scholar 

  30. Calderon RL, Hudgens E, Le XC, Schreinemachers D, Thomas DJ. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. Environ Health Perspect. 1999;107:663–7.

    Article  CAS  Google Scholar 

  31. Pellizzari ED, Clayton CA. Assessing the measurement precision of various arsenic forms and arsenic exposure in the national human exposure assessment survey (nhexas). Environ Health Perspect. 2006;114:220–7.

    Article  CAS  Google Scholar 

  32. National Research Council. Arsenic in drinking water. Washington, DC; 1999.

  33. Mushak P, Natural Resources Defense Council. Arsenic and old laws: A scientific and public health analysis of arsenic occurrence in drinking water, its health effects, and epa’s outdated arsenic tap water standard. New York; 2000.

  34. Kurzius-Spencer M, Burgess JL, Harris RB, Hartz V, Roberge J, Huang S, et al. Contribution of diet to aggregate arsenic exposures-an analysis across populations. J Expo Sci Environ Epidemiol. 2014;24:156–62.

    Article  CAS  Google Scholar 

  35. deCastro BR, Caldwell KL, Jones RL, Blount BC, Pan Y, Ward C, et al. Dietary sources of methylated arsenic species in urine of the united states population, nhanes 2003-2010. PLoS ONE. 2014;9:e108098.

    Article  Google Scholar 

  36. Bild DE, Bluemke DA, Burke GL, Detrano R, ez Roux AV, Folsom AR, et al. Multi-ethnic study of atherosclerosis: Objectives and design. Am J Epidemiol. 2002;156:871–81.

    Article  Google Scholar 

  37. Jones MR, Tellez-Plaza M, Vaidya D, Grau M, Francesconi KA, Goessler W, et al. Develoment of a biomarker to estimate inorganic arsenic exposure in populations with frequent seafood intake: evidence from mesa and nhanes. Am J Epidemiol. 2016;184:590–602.

    Article  Google Scholar 

  38. Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, et al. Arsenic species and selected metals in human urine: validation of hplc/icpms and icpms procedures for a long-term population-based epidemiological study. Anal Methods. 2012;4:406–13.

    Article  CAS  Google Scholar 

  39. Block G, Woods M, Potosky A, Clifford C. Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol. 1990;43:1327–35.

    Article  CAS  Google Scholar 

  40. Mayer-Davis EJ, Vitolins MZ, Carmichael SL, Hemphill S, Tsaroucha G, Rushing J, et al. Validity and reproducibility of a food frequency interview in a multi-cultural epidemiology study. Ann Epidemiol. 1999;9:314–24.

    Article  CAS  Google Scholar 

  41. Nettleton JA, Rock CL, Wang Y, Jenny NS, Jacobs DR. Associations between dietary macronutrient intake and plasma lipids demonstrate criterion performance of the multi-ethnic study of atherosclerosis (MESA) food-frequency questionnaire. Br J Nutr. 2009;102:1220–7.

    Article  CAS  Google Scholar 

  42. Gribble MO, Crainiceanu CM, Howard BV, Umans JG, Francesconi KA, Goessler W, et al. Body composition and arsenic metabolism: a cross-sectional analysis in the strong heart study. Environ Health. 2013;12:107.

    Article  Google Scholar 

  43. Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, Osterloh JD. Levels of urinary total and speciated arsenic in the us population: National health and nutrition examination survey 2003-2004. J Expo Sci Environ Epidemiol. 2009;19:59–68.

    Article  CAS  Google Scholar 

  44. Brima EI, Haris PI, Jenkins RO, Polya DA, Gault AG, Harrington CF. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol Appl Pharmacol. 2006;216:122–30.

    Article  CAS  Google Scholar 

  45. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. 2011;111:110–8.

    Article  CAS  Google Scholar 

  46. Ryker SJ. Mapping arsenic in groundwater. Geotimes. 2001;46:34–36.

    Google Scholar 

  47. Welch AH, Watkins SA, Helsel DR, Focazio MJ. Arsenic in ground-water resources of the United States. U.S. Geological Survey Fact Sheet FS-063-002000.

  48. Focazio MJ, Welch AH, Watkins SA, Helsel DR, Horn MA. A retrospective analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations. 2000.

  49. Navas-Acien A, Umans JG, Howard BV, Goessler W, Francesconi KA, Crainiceanu CM, et al. Urine arsenic concentrations and species excretion patterns in american indian communities over a 10-year period: the strong heart study. Environ Health Perspect. 2009;117:1428–33.

    Article  CAS  Google Scholar 

  50. Kurzius-Spencer M, O’Rourke MK, Hsu CH, Hartz V, Harris RB, Burgess JL. Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Expo Sci Environ Epidemiol. 2013;23:442–9.

    Article  CAS  Google Scholar 

  51. Cascio C, Raab A, Jenkins RO, Feldmann J, Meharg AA, Haris PI. The impact of a rice based diet on urinary arsenic. J Environ Monit. 2011;13:257–65.

    Article  CAS  Google Scholar 

  52. Del Razo LM, Garcia-Vargas GG, Vargas H, Albores A, Gonsebatt ME, Montero R, et al. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol. 1997;71:211–7.

    Article  Google Scholar 

  53. Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, et al. Urinary and dietary analysis of 18,470 bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS ONE. 2013;8:e80691.

    Article  Google Scholar 

  54. Pearson GF, Greenway GM, Brima EI, Haris PI. Rapid arsenic speciation using ion pair lc-icpms with a monolithic silica column reveals increased urinary dma excretion after ingestion of rice. J Anal Spectrom. 2007;22:361–9.

    Article  CAS  Google Scholar 

  55. Handson PD. Lead and arsenic levels in wines produced from vineyards where lead arsenate sprays are used for caterpillar control. J Sci Food Agric. 1984;35:215–8.

    Article  CAS  Google Scholar 

  56. Hsueh YM, Ko YF, Huang YK, Chen HW, Chiou HY, Huang YL, et al. Determinants of inorganic arsenic methylation capability among residents of the lanyang basin, taiwan: arsenic and selenium exposure and alcohol consumption. Toxicol Lett. 2003;137:49–63.

    Article  CAS  Google Scholar 

  57. Huang YK, Huang YL, Hsueh YM, Yang MH, Wu MM, Chen SY, et al. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control. 2008;19:829–39.

    Article  Google Scholar 

  58. Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med. 2008;12(6A):2255–62.

    Article  CAS  Google Scholar 

  59. Silbergeld EK, Nachman K. The environmental and public health risks associated with arsenical use in animal feeds. Ann N Y Acad Sci. 2008;1140:346–57.

    Article  CAS  Google Scholar 

  60. Lasky T, Sun W, Kadry A, Hoffman MK. Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken. Environ Health Perspect. 2004;112:18–21.

    Article  CAS  Google Scholar 

  61. Liu Q, Peng H, Lu X, Le XC. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal Chim Acta. 2015;888:1–9.

    Article  CAS  Google Scholar 

  62. Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A. Poultry consumption and arsenic exposure in the U.S. population. Unpublished manuscript, 2016

  63. (IARC) IAfRoC. Arsenic in drinking water (group 1). Lyon, France2004.

  64. Garcia-Esquinas E, Pollan M, Umans JG, Francesconi KA, Goessler W, Guallar E, et al. Arsenic exposure and cancer mortality in a us-based prospective cohort: the strong heart study. Cancer Epidemiol Biomark Prev. 2013;22:1944–53.

    Article  CAS  Google Scholar 

  65. Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep. 2012;14:542–55.

    Article  CAS  Google Scholar 

  66. Kuo CC, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diabet Rep. 2013;13:831–49.

    Article  CAS  Google Scholar 

  67. Wang W, Xie Z, Lin Y, Zhang D. Association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis. J Epidemiol Community Health. 2014;68:176–84.

    Article  Google Scholar 

Download references

Acknowledgements

The Multi-Ethnic Study of Atherosclerosis (MESA) was supported by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-95169 from the National Heart, Lung, and Blood Institute (NHLBI) and by grants UL1-TR-000040 and UL1-TR-001079 from the National Center for Research Resources (NCRR). Arsenic analyses and interpretation were supported by R01HL090863 from NHLBI and by R01ES021367, R01ES025216, and P42ES10349 from the National Institute of Environmental Health Sciences. MRJ was supported by a National Cancer Institute National Research Service Award (T32CA009314). MT-P was supported by the Carlos III Health Institute Madrid (CP12/03080), co-funded by the European Funds for Regional Development (FEDER). The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda R. Jones.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M.R., Tellez-Plaza, M., Vaidya, D. et al. Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA). J Expo Sci Environ Epidemiol 29, 310–322 (2019). https://doi.org/10.1038/s41370-018-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0042-0

Keywords

This article is cited by

Search

Quick links