Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exposure to acute air pollution and risk of bronchiolitis and otitis media for preterm and term infants

Abstract

Our aim is to estimate associations between acute increases in particulate matter with diameter of 2.5 µm or less (PM2.5) concentrations and risk of infant bronchiolitis and otitis media among Massachusetts births born 2001 through 2008.Our case-crossover study included 20,017 infant bronchiolitis and 42,336 otitis media clinical encounter visits. PM2.5 was modeled using satellite, remote sensing, meteorological and land use data. We applied conditional logistic regression to estimate odds ratios (ORs) and confidence intervals (CIs) per 10-µg/m3 increase in PM2.5. We assessed effect modification to determine the most susceptible subgroups. Infant bronchiolitis risk was elevated for PM2.5 exposure 1 day (OR = 1.07, 95% CI = 1.03–1.11) and 4 days (OR = 1.04, 95% CI = 0.99–1.08) prior to clinical encounter, but not 7 days. Non-significant associations with otitis media varied depending on lag. Preterm infants were at substantially increased risk of bronchiolitis 1 day prior to clinical encounter (OR = 1.17, 95% CI = 1.08–1.28) and otitis media 4 and 7 days prior to clinical encounter (OR = 1.09, 95% CI = 1.02–1.16 and OR = 1.08, 95% CI = 1.02–1.15, respectively). In conclusion, preterm infants are most susceptible to infant bronchiolitis and otitis media associated with acute PM2.5 exposures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krzyzanowski M, Cohen A, Anderson R. Quantification of health effects of exposure to air pollution. Occup Environ Med. 2002;59:791–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pope CA III, Burnett RT, Thun MJ. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Silva R, West J, Zhange Y, Anenberg SC, Lamarque JF, Shindell DT. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ Res Lett. 2013;8:034005.

    Article  CAS  Google Scholar 

  4. World Health Organization. Health aspects of air pollution: results from the WHO project “systematic review of air pollution in Europe”. Copenhagen:WHO; 2004.

  5. Laden F, Schwartz J, Speizer FE. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med. 2006;173:667–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. US EPA Air quality criteria for ozone and related photochemical oxidants. Washington, DC: United States: Environmental Protection Agency; 2006.

    Google Scholar 

  7. Koehoorn M, Karr CJ, Demers PA, Lencar C, Tamburic L. Descriptive epidemiological features of bronchiolitis in a population-based cohort. Pediatrics. 2008;122:1196–203.

    Article  PubMed  Google Scholar 

  8. Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM. Otitis media. Lancet. 2004;363:465–73.

    Article  PubMed  Google Scholar 

  9. Bacharier LB, Cohen R, Schweiger T, Yin-Declue H, Christie C, Zheng J, et al. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 2012;130:91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karr CJ, Demers PA, Koehoorn MW, Lencar CC, Tamburic L, Brauer M. Influence of ambient air pollutant sources on clinical encounters for infant bronchiolitis. Am J Respir Crit Care Med. 2009;180:995–1001.

    Article  PubMed  CAS  Google Scholar 

  11. Semple MG, Taylor-Robinson DC, Lane S, Smyth RL. Household tobacco smoke and admission weight predict severe bronchiolitis in infants independent of deprivation: prospective cohort study. PLoS One. 2011;6:e22425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Boyce TG, Mellen BG, Mitchel EF Jr, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr. 2000;137:865–70.

    Article  PubMed  CAS  Google Scholar 

  13. Karr C, Lumly T, Sheperd K, Davis R, Larson T, Ritz B, et al. A case-crossover study of wintertime ambient air pollution and infant bronchiolitis. Environ Health Perspect. 2006;114:227–81.

    Article  CAS  Google Scholar 

  14. Karr C, Lumley T, Schreuder A, Davis R, Larson T, Ritz B, et al. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am J Epidemiol. 2007;165:553–60.

    Article  PubMed  Google Scholar 

  15. Vandini S, Corvaglia L, Alessandroni R, Aquilano G, Marsico C, Spinelli M, et al. Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital J Pediatr. 2013;39:1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coker TR, Chan LS, Newberry SJ, Limbos MA, Suttorp MJ, Shekelle PG, et al. Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: a systematic review. JAMA. 2010;304:2161.

    Article  PubMed  CAS  Google Scholar 

  17. Soni A. Ear infections (otitis media) in children (0–17): use and expenditures, 2006. Statistical Brief No. 228. Agency for Healthcare Research and Quality. 2007. http://www.meps.ahrq.gov/mepsweb/data_files/publications/st228/stat228.pdf. Accessed 12 Jan 2011.

  18. Teele DW, Klein JO, Rosner B. Epidemiol of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis. 1989;160:83–94.

    Article  PubMed  CAS  Google Scholar 

  19. Costa JL, Navarro A, Neves JB, Martin M. Household wood and charcoal smoke increases risk of otitis media in childhood in Maputo. Int J Epidemiol. 2004;33:583–78.

    Article  Google Scholar 

  20. Daigler GE, Markello SJ, Cummings KM. The effect of indoor air pollutants on otitis media and asthma in children. Laryngoscope. 1991;101:293–96.

    Article  PubMed  CAS  Google Scholar 

  21. DiFranza JR, Aligne CA, Weitzman M. Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics. 2004;113(4 Suppl):1007–15.

    PubMed  Google Scholar 

  22. Lambert AL, Mangum JB, DeLorme MP, Everitt JI. Ultrafine carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary inflammation, and chemokine expression. Toxicol Sci. 2003;73:339–46.

    Article  Google Scholar 

  23. Brauer M, Gehring U, Brunekreef B, de Jongste J, Gerritsen J, Rovers M, et al. Traffic-related air pollution and otitis media. Environ Health Perspect. 2006;114:1414–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. MacIntyre EA, Karr CJ, Koehoorn M, Demers PA, Tamburic L, Lencar C, et al. Residential air pollution and otitis media during the first two years of life. Epidemiol . 2011;22:81–9.

    Article  Google Scholar 

  25. Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 2013;121:387–92.

    Article  PubMed  Google Scholar 

  26. Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M, et al. Ambient air pollutant measurement error: characterization and impacts in a time-series epidemiologic study in Atlanta. Environl. Sci Technol. 2010;44:7692–8.

    Article  CAS  Google Scholar 

  27. Shapiro-Mendoza CK, Tomashek KM, Kotelchuck M, Barfield W, Nannini A, Weiss J, et al. Effect of late-preterm birth and maternal medical conditions on newborn morbidity risk. Pediatrics. 2008;121:223–7.

    Article  Google Scholar 

  28. Girguis MS, Strickland MJ, Hu X, Liu Y, Bartell SM, Vieira VM, Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res. 2016;146:1–9.

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Paciorek CJ, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Perspect. 2009;117:886–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee HJ, Liu Y, Coull BA, Schwartz J, Koutrakis P. A novel calibration approach of modis aod data to predict PM2.5 concentrations. Atmos Chem Phys. 2011;11:7991–8002.

    Article  CAS  Google Scholar 

  31. Kloog I, Nordio F, Coull BA, Schwartz J. Predicting spatiotemporal mean air temperature using MODISsatelilte surface temperature measurements across the Northeastern USA. Remote Sense. 2014;150:132–9.

    Google Scholar 

  32. Cosgrove BA, Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J Geophys Res Atmos. 2003;108(D22).

  33. Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H. Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology . 2001;12:186–92.

    Article  PubMed  CAS  Google Scholar 

  34. Navidi W, Weinhadl E. Risk set sampling for case-crossover designs. Epidemiology. 2002;13:100–5.

    Article  PubMed  Google Scholar 

  35. Janes H, Sheppard L, Lumley T. Overlap bias in the case-crossover design, with application to air pollution exposures. Stat Med. 2005;24:285–300.

    Article  PubMed  Google Scholar 

  36. Tristram DA, Welliver RC. Respiratory syncytial virus. In: Long SS, Pickering LK, Prober CG, (eds.). Principles and practice of pediatric infectious diseases. 2nd ed. New York, NY: Churchill Livingstone; 2003. p. 213–8.

    Google Scholar 

  37. Lawn E, Gravett G, Nunes M, Rubens E, Stanton C. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2010;10(1):S1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. World Health Organization.2015. Air Pollution Ranking. 2014. Website http:faq/2015-05-16/world-health-organization-2014-air-pollution-ranking.

  39. Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect. 2012;14:17–25.

    Article  PubMed  CAS  Google Scholar 

  40. Nkadi PO, Merritt TA, Pillers D-AM. An Overview of Pulmonary Surfactant in the Neonate: Genetics, Metabolism, and the Role of Surfactant in Health and Disease. Mol Genet Metab. 2009;97:95–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shukla A, Timblin C, Berube K, Gordon T, McKinney W, Driscoll K, et al. Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro. Am J Respir Cell Mol Biol. 2000;23:182–7.

    Article  PubMed  CAS  Google Scholar 

  42. Zemek R, Szyszkowicz M, Rowe BH. Air pollution and emergency department visits for otitis media: a case-crossover study in Edmonton, Canada. Environ Health Perspect. 2010;118:1631–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cowling TE, Cecil EV, Soljak MA, Lee JT, Millett C, Majeed A, et al. Access to Primary Care and Visits to Emergency Departments in England: A Cross-Sectional, Population-Based Study. PLoS ONE. 2013;8:e66699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lesser J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Inft Dises. 2009;9:291–300.

    Article  Google Scholar 

Download references

Funding

Funding

This work was supported by grant number 5R01ES019897 from the National Institute of Environmental Health (NIEHS). Its contents are solely the responsibility of the authors and do not necessarily represent the views of NIH. This work was partially supported by NASA Applied Sciences Program (grant no. NNX11AI53G to Y.L and X.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica M. Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girguis, M.S., Strickland, M.J., Hu, X. et al. Exposure to acute air pollution and risk of bronchiolitis and otitis media for preterm and term infants. J Expo Sci Environ Epidemiol 28, 348–357 (2018). https://doi.org/10.1038/s41370-017-0006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-017-0006-9

This article is cited by

Search

Quick links