Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heat-shock protein 70 expression in the seminal plasma of patients with chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome

Abstract

The purpose of this study was to assess the diagnostic value and potentially protective capacity of heat-shock protein 70 (HSP70) in chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). In this study, seminal plasma levels of cytokines (tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β)) and HSP70 were evaluated by enzyme-linked immunosorbent assay in 80 men: 15 healthy controls, 16 men with chronic bacterial prostatitis, 23 men with CP/CPPS IIIA and 26 with CP/CPPS IIIB. The HSP70 levels in chronic bacterial prostatitis and CP/CPPS patients were correlated with chronic prostatitis symptom index (CPSI). Significantly increased levels of cytokines (TNF-α and IL-1β) and HSP70 were observed in seminal plasmas from patients with chronic bacterial prostatitis compared with CP/CPPS patients and controls. However, only IL-1β was significantly elevated compared with CP/CPPS IIIB and controls in patients with CP/CPPS IIIA. HSP70 levels in CP/CPPS patients were significantly lower than that in controls. HSP70 concentration in seminal plasma was negatively correlated with CPSI in chronic bacterial prostatitis. The results indicated that HSP70 and IL-1β appear to be the most reliable and predictive surrogate markers to diagnose chronic bacterial prostatitis and CP/CPPS, respectively. HSP70 has an important protective role in the regulation of cell functions in chronic bacterial prostatitis. CP/CPPS would probably be detrimental to the ability of T cells and consequently suppress the expression of HSP70.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Krieger JN, Riley DE . Bacteria in the chronic prostatitis–chronic pelvic pain syndrome: molecular approaches to critical research questions. J Urol 2002; 167: 2574–2583.

    Article  CAS  PubMed  Google Scholar 

  2. Schaeffer AJ, Landis JR, Knauss JS, Propert KJ, Alexander RB, Litwin MS, et al., Chronic Prostatitis Collaborative Research Network Group. Demographic and clinical characteristics of men with chronic prostatitis: the National Institutes of Health chronic prostatitis cohort study. J Urol 2002; 168: 593–598.

    Article  PubMed  Google Scholar 

  3. Krieger JN, Nyberg Jr L, Nickel JC . NIH consensus definition and classification of prostatitis. JAMA 1999; 282: 236–237.

    Article  CAS  PubMed  Google Scholar 

  4. Pontari MA, Ruggieri MR . Mechanisms in prostatitis/chronic pelvic pain syndrome. J Urol 2004; 172: 839–845.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alexander RB, Brady F, Ponniah S . Autoimmune prostatitis: evidence of T cell reactivity with normal prostatic proteins. Urology 1997; 50: 893–899.

    Article  CAS  PubMed  Google Scholar 

  6. Ponniah S, Arah I, Alexander RB . PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 2000; 44: 49–54.

    Article  CAS  PubMed  Google Scholar 

  7. Motrich RD, Maccioni M, Riera CM, Rivero VE . Autoimmune prostatitis: state of the art. Scand J Immunol 2007; 66: 217–227.

    Article  CAS  PubMed  Google Scholar 

  8. Rudick CN, Schaeffer AJ, Thumbikat P . Experimental autoimmune prostatitis induces chronic pelvic pain. Am J Physiol Regul Integr Comp Physiol 2008; 294: 1268–1275.

    Article  Google Scholar 

  9. Takayama S, Reed JC, Homma S . Heat-shock proteins as regulator of apoptosis. Oncogene 2003; 22: 9041–9047.

    Article  CAS  PubMed  Google Scholar 

  10. Pockley AG . Heat shock proteins as regulators of the immune response. Lancet 2003; 362: 469–476.

    Article  CAS  PubMed  Google Scholar 

  11. Ranford JC, Henderson B . Chaperonins in disease: mechanisms, models, and treatments. Mol Pathol 2002; 55: 209–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nollen EA, Morimoto RI . Chaperoning signaling pathways: molecular chaperones as stress-sensing heat shock proteins. J Cell Sci 2002; 115: 2809–2816.

    CAS  PubMed  Google Scholar 

  13. Zhang X, Beuron F, Freemont PS . Machinery of protein folding and unfolding. Curr Opin Struct Biol 2002; 12: 231–238.

    Article  PubMed  Google Scholar 

  14. Hartl FU, Hayer-Hartl M . Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295: 1852–1858.

    Article  CAS  PubMed  Google Scholar 

  15. Kojima K, Musch MW, Ropeleski MJ, Boone DL, Ma A, Chang EB . Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation. Am J Physiol Gastrointest Liver Physiol 2004; 286: 645–652.

    Article  Google Scholar 

  16. Koets A, Hoek A, Langelaar M, Overdijk M, Santema W, Franken P et al. Mycobacterial 70 kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis. Vaccine 2006; 24: 2550–2559.

    Article  CAS  PubMed  Google Scholar 

  17. Yeo M, Park HK, Kim DK, Cho SW, Kim YS, Cho SY et al. Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobacter pylori. Proteomics 2004; 4: 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  18. Bao XQ, Liu GT . Induction of overexpression of the 27- and 70-kDa heat shock proteins by bicyclol attenuates concanavalin A-induced liver injury through suppression of nuclear factor-kappaB in mice. Mol Pharmacol 2009; 75: 1180–1188.

    Article  CAS  PubMed  Google Scholar 

  19. Etienne S, Gaborit N, Henrionnet C, Pinzano A, Galois L, Netter P et al. Local induction of heat shock protein 70 (Hsp70) by proteasome inhibition confers chondroprotection during surgically induced osteoarthritis in the rat knee. Biomed Mater Eng 2008; 18: 253–260.

    CAS  PubMed  Google Scholar 

  20. Guo S, Wharton W, Moseley P, Shi H . Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 2007; 12: 245–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, Wang W, Qian L . Hsp70 may protect cardiomyocytes from stress-induced injury by inhibiting Fas-mediated apoptosis. Cell Stress Chaperones 2007; 12: 83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singleton KD, Wischmeyer PE . Glutamine's protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am J Physiol Regul Integr Comp Physiol 2007; 292: 1839–1845.

    Article  Google Scholar 

  23. Bierklund JTE, Weidner W . Understanding chronic pelvic pain syndrome. Curr Opin Urol 2002; 12: 63–67.

    Article  Google Scholar 

  24. Motrich RD, Maccioni M, Molina R, Tissera A, Olmedo J, Riera CM et al. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum Reprod 2005; 20: 2567–2572.

    Article  PubMed  Google Scholar 

  25. Batstone GR, Doble A, Gaston JS . Autoimmune T cell responses to seminal plasma in chronic Pelvic pain syndrome (CPPS). Clin Exp Immunol 2002; 128: 302–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ponniah S, Arah I, Alexander RB . PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 2000; 44: 49–54.

    Article  CAS  PubMed  Google Scholar 

  27. Yu J, Bao E, Yan J, Lei L . Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones 2008; 13: 327–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torigoe Y, Takahashi N, Hara M, Yoshimatsu H, Saikawa T . Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology 2009; 150: 1450–1455.

    Article  CAS  PubMed  Google Scholar 

  29. Bromberg Z, Raj N, Goloubinoff P, Deutschman CS, Weiss YG . Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis-induced model of acute respiratory distress syndrome. Crit Care Med 2008; 36: 246–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toth B, Alexander M, Daniel T, Chaudry IH, Hubbard WJ, Schwacha MG . The role of gammadelta T cells in the regulation of neutrophil-mediated tissue damage after thermal injury. J Leukoc Biol 2004; 76: 545–552.

    Article  CAS  PubMed  Google Scholar 

  31. Sung YY, Pineda C, MacRae TH, Sorgeloos P, Bossier P . Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress Chaperones 2008; 13: 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nickerson M, Elphick GF, Campisi J, Greenwood BN, Fleshner M . Physical activity alters the brain Hsp70 and IL-1b responses to peripheral E. coli challenge. Am J Physiol Regul Integr Comp Physiol 2005; 289: 1665–1674.

    Article  Google Scholar 

  33. Musch MW, Petrof EO, Kojima K, Ren H, Mckay DM, Chang EB . Bacterial superantigen-treated intestinal epithelial cells upregulate heat shock proteins 25 and 72 and are resistant to oxidant cytotoxicity. Infect Immun 2004; 72: 3187–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O et al. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 2006; 290: 1018–1030.

    Article  Google Scholar 

  35. Petrof EO, Musch MW, Ciancio M, Sun J, Hobert ME, Claud EC et al. Flagellin is required for salmonella-induced expression of heat shock protein Hsp25 in intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2008; 294: 808–818.

    Article  Google Scholar 

  36. Nagasawa H, Hisaeda H, Maekawa Y, Fujioka H, Ito Y, Aikawa M et al. Gamma delta T cells play a crucial role in the expression of 65 000MW heat-shock protein in mice immunized with Toxoplasma antigen. Immunology 1994; 83: 347–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirsh MI, Junger WG . Roles of heat shock proteins and gamma delta T cells in inflammation. Am J Respir Cell Mol Biol 2008; 39: 509–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan MN, Shukla D, Bansal A, Mustoori S, Ilavazhagan G . Immunogenicity and protective efficacy of GroEL(hsp60) of Streptococcus pneumoniae against lethal infection in mice. FEMS Immunol Med Microbiol 2009; 56: 56–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Doctor Jian Bai of the Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology for his assistance in writing and preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-M Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Xu, YM., Ye, ZQ. et al. Heat-shock protein 70 expression in the seminal plasma of patients with chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome. Prostate Cancer Prostatic Dis 13, 338–342 (2010). https://doi.org/10.1038/pcan.2010.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2010.22

Keywords

This article is cited by

Search

Quick links