Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of DNA methylation in single circulating tumor cells

Abstract

Direct analysis of circulating tumor cells (CTCs) can inform on molecular mechanisms underlying systemic spread. Here we investigated promoter methylation of three genes regulating epithelial-to-mesenchymal transition (EMT), a key mechanism enabling epithelial tumor cells to disseminate and metastasize. For this, we developed a single-cell protocol based on agarose-embedded bisulfite treatment, which allows investigating DNA methylation of multiple loci via a multiplex PCR (multiplexed-scAEBS). We established our assay for the simultaneous analysis of three EMT-associated genes miR-200c/141, miR-200b/a/429 and CDH1 in single cells. The assay was validated in solitary cells of GM14667, MDA-MB-231 and MCF-7 cell lines, achieving a DNA amplification efficiency of 70% with methylation patterns identical to the respective bulk DNA. Then we applied multiplexed-scAEBS to 159 single CTCs from 11 patients with metastatic breast and six with metastatic castration-resistant prostate cancer, isolated via CellSearch (EpCAMpos/CKpos/CD45neg/DAPIpos) and subsequent FACS sorting. In contrast to CD45pos white blood cells isolated and processed by the identical approach, we observed in the isolated CTCs methylation patterns resembling more those of epithelial-like cells. Methylation at the promoter of microRNA-200 family was significantly higher in prostate CTCs. Data from our single-cell analysis revealed an epigenetic heterogeneity among CTCs and indicates tumor-specific active epigenetic regulation of EMT-associated genes during blood-borne dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pantel K, Speicher MR . The biology of circulating tumor cells. Oncogene 2015; 35: 1216–1224.

    Article  PubMed  Google Scholar 

  2. Mego M, Mani SA, Cristofanilli M . Molecular mechanisms of metastasis in breast cancer—clinical applications. Nat Rev Clin Oncol 2010; 7: 693–701.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  4. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 2011; 130: 449–455.

    Article  CAS  PubMed  Google Scholar 

  5. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J et al. Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS One 2015; 10: e0123976.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gires O, Stoecklein NH . Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell Molr Life Sci 2014; 71: 4393–4402.

    Article  CAS  Google Scholar 

  8. Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 2012; 12: 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carmona FJ, Davalos V, Vidal E, Gomez A, Heyn H, Hashimoto Y et al. A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition. Cancer Res 2014; 74: 5608–5619.

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484–492.

    Article  CAS  PubMed  Google Scholar 

  11. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  12. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  13. Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH . miR-200b mediates post-transcriptional repression of ZFHX1B. RNA 2007; 13: 1172–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ . Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67: 7972–7976.

    Article  CAS  PubMed  Google Scholar 

  17. Mansouri A, Spurr N, Goodfellow PN, Kemler R . Characterization and chromosomal localization of the gene encoding the human cell adhesion molecule uvomorulin. Differentiation 1988; 38: 67–71.

    Article  CAS  PubMed  Google Scholar 

  18. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2011; 31: 2062–2074.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG . Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 2000; 275: 2727–2732.

    Article  CAS  PubMed  Google Scholar 

  20. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C . Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 2014; 11: 129–144.

    Article  CAS  PubMed  Google Scholar 

  21. Stoecklein NH, Fischer JC, Niederacher D, Terstappen LW . Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev Mol Diagn 2015; 16: 147–164.

    Article  PubMed  Google Scholar 

  22. Alberter B, Klein CA, Polzer B . Single-cell analysis of CTCs with diagnostic precision: opportunities and challenges for personalized medicine. Expert Rev Mol Diagn 2015; 16: 25–38.

    Article  PubMed  Google Scholar 

  23. Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES . Breast cancer metastasis suppressor-1 promoter methylation in primary breast tumors and corresponding circulating tumor cells. Mol Cancer Res 2013; 11: 1248–1257.

    Article  CAS  PubMed  Google Scholar 

  24. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES . SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin Chem 2013; 59: 270–279.

    Article  CAS  PubMed  Google Scholar 

  25. Chimonidou M, Strati A, Tzitzira A, Sotiropoulou G, Malamos N, Georgoulias V et al. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin Chem 2011; 57: 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  26. Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S et al. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int J Cancer 2014; 134: 2284–2293.

    Article  CAS  PubMed  Google Scholar 

  27. Pixberg CF, Schulz WA, Stoecklein NH, Neves RP Characterization of DNA methylation in circulating tumor cellsGenes (Basel) 2015; 6: 1053–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayatsu H, Wataya Y, Kai K, Iida S . Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 1970; 9: 2858–2865.

    Article  CAS  PubMed  Google Scholar 

  29. Clark SJ, Harrison J, Paul CL, Frommer M . High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22: 2990–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89: 1827–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raizis AM, Schmitt F, Jost JP . A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem 1995; 226: 161–166.

    Article  CAS  PubMed  Google Scholar 

  32. Grunau C, Clark SJ, Rosenthal A . Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001; 29: E65–E65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olek A, Oswald J, Walter J . A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 1996; 24: 5064–5066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hajkova P, el-Maarri O, Engemann S, Oswald J, Olek A, Walter J . DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol 2002; 200: 143–154.

    CAS  PubMed  Google Scholar 

  35. EpiGeneSys.eu. EpiGeneSys.eu. Tierling S EpiGeneSys.eu. Reither S EpiGeneSys.eu. Walter J . Bisulfite sequencing of small DNA/cell samples (PROT35) [updated 2007 November 12]. Available at: http://www.epigenesys.eu/images/stories/protocols/pdf/20111026124522_p35.pdf.

  36. Shapiro R, Braverman B, Louis JB, Servis RE . Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem 1973; 248: 4060–4064.

    CAS  PubMed  Google Scholar 

  37. Geuns E, De Rycke M, Van Steirteghem A, Liebaers I . Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum Mol Genet 2003; 12: 2873–2879.

    Article  CAS  PubMed  Google Scholar 

  38. Geuns E, De Temmerman N, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M . Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur J Hum Genet 2007; 15: 352–361.

    Article  CAS  PubMed  Google Scholar 

  39. Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M . Methylation analysis of KvDMR1 in human oocytes. J Med Genet 2007; 44: 144–147.

    Article  CAS  PubMed  Google Scholar 

  40. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter HI et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes 2010; 3: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 2010; 5: e8697.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 2011; 128: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  43. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 1995; 55: 5195–5199.

    CAS  PubMed  Google Scholar 

  44. Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM . Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 1997; 272: 22322–22329.

    Article  CAS  PubMed  Google Scholar 

  45. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006; 94: 661–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S . Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 1995; 92: 7416–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neves RP, Raba K, Schmidt O, Honisch E, Meier-Stiegen F, Behrens B et al. Genomic high-resolution profiling of single CKpos/CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast cancer. Clin Chem 2014; 60: 1290–1297.

    CAS  PubMed  Google Scholar 

  48. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 2014; 6: 1371–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 2013; 73: 2965–2975.

    Article  CAS  PubMed  Google Scholar 

  50. Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 2014; 74: 1694–1704.

    Article  CAS  PubMed  Google Scholar 

  51. Brambert PR, Kelpsch DJ, Hameed R, Desai CV, Calafiore G, Godley LA et al. DNMT3B7 expression promotes tumor progression to a more aggressive phenotype in breast cancer cells. PLoS One 2015; 10: e0117310.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Farias EF, Petrie K, Leibovitch B, Murtagh J, Chornet MB, Schenk T et al. Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc Natl Acad Sci USA 2010; 107: 11811–11816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lianidou ES . Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 2016; 10: 431–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Magbanua MJ, Park JW . Advances in genomic characterization of circulating tumor cells. Cancer Metastasis Rev 2014; 33: 757–769.

    Article  CAS  PubMed  Google Scholar 

  55. Schwartzman O, Tanay A . Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet 2015; 16: 716–726.

    Article  CAS  PubMed  Google Scholar 

  56. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 2012; 30: 525–532.

    Article  PubMed  Google Scholar 

  57. Spiliotaki M, Mavroudis D, Kapranou K, Markomanolaki H, Kallergi G, Koinis F et al. Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res 2014; 16: 485.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rossi E, Basso U, Celadin R, Zilio F, Pucciarelli S, Aieta M et al. M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by CellSearch analysis. Clin Cancer Res 2010; 16: 5233–5243.

    Article  CAS  PubMed  Google Scholar 

  59. Larson CJ, Moreno JG, Pienta KJ, Gross S, Repollet M, O'Hara S M et al. Apoptosis of circulating tumor cells in prostate cancer patients. Cytometry A 2004; 62: 46–53.

    Article  PubMed  Google Scholar 

  60. Genereux DP, Johnson WC, Burden AF, Stoger R, Laird CD . Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 2008; 36: e150.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  63. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24: 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  64. Grooteclaes ML, Frisch SM . Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19: 3823–3828.

    Article  CAS  PubMed  Google Scholar 

  65. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 2002; 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  66. Pal SK, He M, Wilson T, Liu X, Zhang K, Carmichael C et al. Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clin Genitourin Cancer 2015; 13: 130–136.

    Article  CAS  PubMed  Google Scholar 

  67. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011; 9: 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsuji T, Ibaragi S, Hu GF . Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 2009; 69: 7135–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J . Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 2008; 68: 10377–10386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED . Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 2006; 66: 11271–11278.

    Article  CAS  PubMed  Google Scholar 

  72. Allard WJ, Terstappen LW . CCR 20th Anniversary Commentary: paving the way for circulating tumor cells. Clin Cancer Res 2015; 21: 2883–2885.

    Article  PubMed  Google Scholar 

  73. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 2009; 101: 61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rao CG, Chianese D, Doyle GV, Miller MC, Russell T, Sanders RA Jr et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol 2005; 27: 49–57.

    CAS  PubMed  Google Scholar 

  75. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer 2015; 15: 399.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lord CJ, Ashworth A . BRCAness revisited. Nat Rev Cancer 2016; 16: 110–120.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KR, BB, EH, DN, HN, TF, WTK, CS, NHS and RPLN are members of the Disseminated Cancer Cell Network (DCC Net) Düsseldorf. This work was supported by the Düsseldorf School of Oncology (funded by the Comprehensive Cancer Center Düsseldorf/Deutsche Krebshilfe and the Medical Faculty HHU Düsseldorf) (to CFP), by an EU grant reference EU FP7 project CTCTrap (Grant #305341 to JSDB), the Deutsche Krebshilfe (Grant #109600 to CS and NHS) and the Innovative Medicines Initiative Joint Undertaking (IMI JU) in conjunction with CANCER-ID (Grant Agreement #115749 to NHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N H Stoecklein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pixberg, C., Raba, K., Müller, F. et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene 36, 3223–3231 (2017). https://doi.org/10.1038/onc.2016.480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.480

This article is cited by

Search

Quick links