Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epithelial–mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways

Subjects

Abstract

Epithelial–mesenchymal transition (EMT) is regarded as a crucial contributing factor to cancer progression. Diverse factors have been identified as potent EMT inducers in ovarian cancer. However, molecular mechanism sustaining EMT of ovarian cancer cells remains elusive. Here we show that the presence of SOS1/EPS8/ABI1 complex is critical for sustained EMT traits of ovarian cancer cells. Consistent with the role of SOS1/EPS8/ABI1 complex as a Rac1-specific guanine nucleotide exchange factor, depleting Rac1 results in the loss of most of mesenchymal traits in mesenchymal-like ovarian cancer cells, whereas expressing constitutively active Rac1 leads to EMT in epithelial-like ovarian cancer cells. With the aid of clinically tested inhibitors targeting various EMT-associated signaling pathways, we show that only combined treatment of mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) and Src inhibitors can abolish constitutively active Rac1-led EMT and mesenchymal traits displayed by mesenchymal-like ovarian cancer cells. Further experiments also reveal that EMT can be induced in epithelial-like ovarian cancer cells by co-expressing constitutively active MEK1 and Src rather than either alone. As the activities of Erk and Src are higher in ovarian cancer cells with constitutively active Rac1, we conclude that Rac1 sustains ovarian cancer cell EMT through simultaneous activation of MEK1/2 and Src signaling pathways. Importantly, we demonstrate that combined use of MEK1/2 and Src inhibitors effectively suppresses development of intraperitoneal xenografts and prolongs the survival of ovarian cancer-bearing mice. This study suggests that cocktail of MEK1/2 and Src inhibitors represents an effective therapeutic strategy against ovarian cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA . Ovarian cancer. Lancet 2014; 384: 1376–1388.

    PubMed  Google Scholar 

  2. Seward SM, Winer I . Primary debulking surgery and neoadjuvant chemotherapy in the treatment of advanced epithelial ovarian carcinoma. Cancer Metastasis Rev 2015; 34: 5–10.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  5. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  6. Lester RD, Jo M, Montel V, Takimoto S, Gonias SL . uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 2007; 178: 425–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 2008; 10: 295–305.

    Article  CAS  PubMed  Google Scholar 

  8. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP . Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009; 15: 416–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopez-Novoa JM, Nieto MA . Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009; 1: 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prasanphanich AF, Arencibia CA, Kemp ML . Redox processes inform multivariate transdifferentiation trajectories associated with TGFbeta-induced epithelial-mesenchymal transition. Free Radic Biol Med 2014; 76: 1–13.

    Article  CAS  PubMed  Google Scholar 

  11. Davidson B, Trope CG, Reich R . Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2012; 2: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang RY, Chung VY, Thiery JP . Targeting pathways contributing to epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer. Curr Drug Targets 2012; 13: 1649–1653.

    Article  CAS  PubMed  Google Scholar 

  13. Takai M, Terai Y, Kawaguchi H, Ashihara K, Fujiwara S, Tanaka T et al. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res 2014; 7: 76.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Trope C et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol 2015; 46: 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  16. Yoshida S, Furukawa N, Haruta S, Tanase Y, Kanayama S, Noguchi T et al. Expression profiles of genes involved in poor prognosis of epithelial ovarian carcinoma: a review. Int J Gynecol Cancer 2009; 19: 992–997.

    Article  PubMed  Google Scholar 

  17. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 2014; 6: 1279–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P et al. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 2010; 29: 5741–5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen D, Zhang Y, Wang J, Chen J, Yang C, Cai K et al. MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J Ovarian Res 2013; 6: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmed N, Abubaker K, Findlay J, Quinn M . Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 2010; 10: 268–278.

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Wu X, Pan ZK, Huang S . Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res 2010; 70: 9979–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 2002; 62: 6717–6723.

    CAS  PubMed  Google Scholar 

  23. Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 1999; 401: 290–293.

    Article  CAS  PubMed  Google Scholar 

  24. Moustakas A, Heldin CH . Induction of epithelial-mesenchymal transition by transforming growth factor beta. Semin Cancer Biol 2012; 22: 446–454.

    Article  CAS  PubMed  Google Scholar 

  25. Parvani JG, Taylor MA, Schiemann WP . Noncanonical TGF-beta signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16: 127–146.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30: 770–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D et al. Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 2012; 10: 1597–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu Z, Ghosh S, Wang Z, Hunter T . Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 2003; 4: 499–515.

    Article  CAS  PubMed  Google Scholar 

  29. Radisky DC, Bissell MJ . NF-kappaB links oestrogen receptor signalling and EMT. Nat Cell Biol 2007; 9: 361–363.

    Article  CAS  PubMed  Google Scholar 

  30. Cichon MA, Radisky DC . ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget 2014; 5: 2827–2838.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tian L, Li L, Xing W, Li R, Pei C, Dong X et al. IRGM1 enhances B16 melanoma cell metastasis through PI3K-Rac1 mediated epithelial mesenchymal transition. Sci Rep 2015; 5: 12357.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Yang M, Chen R, Su W, Li P, Chen S et al. IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene 2014; 33: 3374–3382.

    Article  CAS  PubMed  Google Scholar 

  33. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY et al. RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 2012; 14: 366–374.

    Article  CAS  PubMed  Google Scholar 

  34. Leng R, Liao G, Wang H, Kuang J, Tang L . Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome. Med Oncol 2015; 32: 329.

    Article  PubMed  Google Scholar 

  35. Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW . BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 2007; 28: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  36. McGrail DJ, Kieu QM, Dawson MR . The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho-ROCK pathway. J Cell Sci 2014; 127 (Pt 12): 2621–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gou WF, Zhao Y, Lu H, Yang XF, Xiu YL, Zhao S et al. The role of RhoC in epithelial-to-mesenchymal transition of ovarian carcinoma cells. BMC Cancer 2014; 14: 477.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, Chung VY et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 2013; 4: e915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Condello S, Cao L, Matei D . Tissue transglutaminase regulates beta-catenin signaling through a c-Src-dependent mechanism. FASEB J 2013; 27: 3100–3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng S, Guo J, Yang Q, Yang X . Crk-like adapter protein regulates CCL19/CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas. Med Oncol 2015; 32: 47.

    Article  PubMed  Google Scholar 

  41. Javle MM, Gibbs JF, Iwata KK, Pak Y, Rutledge P, Yu J et al. Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol 2007; 14: 3527–3533.

    Article  CAS  PubMed  Google Scholar 

  42. Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala S et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 2008; 112: 2088–2100.

    Article  CAS  PubMed  Google Scholar 

  43. Bid HK, Roberts RD, Manchanda PK, Houghton PJ . RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 2013; 12: 1925–1934.

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009; 69: 9228–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF et al. SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia 2014; 16: 279–90 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Zhang M, Chen H, Dong Z, Ganapathy V, Thangaraju M et al. Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res 2010; 70: 7894–7904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Guo Z, Chen H, Dong Z, Ding H, Huang S . HOXC8-dependent cadherin 11 expression facilitates breast cancer cell migration through Trio and Rac. Genes Cancer 2012; 2: 880–888.

    Article  Google Scholar 

  48. Li Y, Chao F, Huang B, Liu D, Kim J, Huang S . HOXC8 promotes breast tumorigenesis by transcriptionally facilitating cadherin-11 expression. Oncotarget 2014; 5: 2596–2607.

    PubMed  PubMed Central  Google Scholar 

  49. Yang L, Fang D, Chen H, Lu Y, Dong Z, Ding HF et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget 2015; 6: 20801–20812.

    PubMed  PubMed Central  Google Scholar 

  50. Hu Q, Lu YY, Noh H, Hong S, Dong Z, Ding HF et al. Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene 2013; 32: 3933–3943.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by E-Institutes of Shanghai Municipal Education Commission (Project E03008), ‘085’ First-Class Discipline Construction Innovation Science and Technology Support Project of Shanghai University of TCM (085ZY1206), National Science Foundation of China (31229002), NIH CA 187152 and DoD OC120313 (W81XWH-13-1-0122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S-B Su or S Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Chen, H., Zhu, J. et al. Epithelial–mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene 36, 1546–1558 (2017). https://doi.org/10.1038/onc.2016.323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.323

This article is cited by

Search

Quick links