Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

mTOR promotes pituitary tumor development through activation of PTTG1

Abstract

As one of the most common intracranial tumors, pituitary tumor is associated with high morbidity. Effective therapy is currently not available for some pituitary tumors due to the largely undefined pathological processes of pituitary tumorigenesis. In this study, hyperactivation of mammalian/mechanistic target of rapamycin (mTOR) signaling was observed in estrogen-induced rat pituitary tumor and mTOR inhibitor rapamycin blocked the tumor development. Pituitary knockout of either mTOR signaling pathway negative regulator Tsc1 or Pten caused mouse pituitary prolactinoma, which was abolished by rapamycin treatment. Mechanistically, the expression of pituitary tumor transforming gene 1 (PTTG1) was upregulated in an mTOR complex 1-dependent manner. Overexpressed PTTG1 was crucial in hyperactive mTOR-mediated tumorigenesis. mTORā€“PTTG1 signaling axis may be targeted for the treatment of tumors with mTOR hyperactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Asa SL, Ezzat S . The pathogenesis of pituitary tumors. Annu Rev Pathol 2009; 4: 97ā€“126.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Marko NF, Weil RJ . Pituitary gland: new pathways in the pathogenesis of pituitary adenomas. Nat Rev Endocrinol 2012; 8: 572ā€“573.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Melmed S . Pathogenesis of pituitary tumors. Nat Rev Endocrinol 2011; 7: 257ā€“266.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Yu R, Melmed S . Pathogenesis of pituitary tumors. Prog Brain Res 2010; 182: 207ā€“227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Inoki K, Li Y, Zhu T, Wu J, Guan KL . TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648ā€“657.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 2002; 11: 525ā€“534.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10: 151ā€“162.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Potter CJ, Pedraza LG, Xu T . Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002; 4: 658ā€“665.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Squarize CH, Castilho RM, Gutkind JS . Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin. Cancer Res 2008; 68: 7066ā€“7072.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Carson RP, Van Nielen DL, Winzenburger PA, Ess KC . Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 2012; 45: 369ā€“380.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 2011; 20: 1290ā€“1305.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. New Engl J Med 2008; 358: 140ā€“151.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. New Engl J Med 2011; 364: 1595ā€“1606.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Dworakowska D, Wlodek E, Leontiou CA, Igreja S, Cakir M, Teng M et al. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr Relat Cancer 2009; 16: 1329ā€“1338.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Lee M, Wiedemann T, Gross C, Leinhauser I, Roncaroli F, Braren R et al. Targeting PI3K/mTOR signaling displays potent antitumor efficacy against nonfunctioning pituitary adenomas. Clin Cancer Res 2015; 21: 3204ā€“3215.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Monsalves E, Juraschka K, Tateno T, Agnihotri S, Asa SL, Ezzat S et al. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 2014; 21: R331ā€“R344.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Rubinfeld H, Shimon I . PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways perturbations in non-functioning pituitary adenomas. Endocrine 2012; 42: 285ā€“291.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Xie R, He WQ, Shen M, Shou XF, Wang YF, Bao WM et al. Specific inhibition of mTOR pathway induces anti-proliferative effect and decreases the hormone secretion in cultured pituitary adenoma cells. J Neurooncol 2015; 125: 79ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Lin SJ, Leng ZG, Guo YH, Cai L, Cai Y, Li N et al. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget 2015; 6: 39329ā€“39341.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Pei L, Melmed S . Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997; 11: 433ā€“441.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Zou H, McGarry TJ, Bernal T, Kirschner MW . Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999; 285: 418ā€“422.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Abbud RA, Takumi I, Barker EM, Ren SG, Chen DY, Wawrowsky K et al. Early multipotential pituitary focal hyperplasia in the alpha-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol Endocrinol 2005; 19: 1383ā€“1391.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Donangelo I, Gutman S, Horvath E, Kovacs K, Wawrowsky K, Mount M et al. Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 2006; 147: 4781ā€“4791.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S . Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol Endocrinol 2005; 19: 2371ā€“2379.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S . Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999; 5: 1317ā€“1321.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 1999; 84: 761ā€“767.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Feng ZZ, Chen JW, Yang ZR, Lu GZ, Cai ZG . Expression of PTTG1 and PTEN in endometrial carcinoma: correlation with tumorigenesis and progression. Med Oncol 2012; 29: 304ā€“310.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S . Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 2000; 355: 716ā€“719.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Ramaswamy S, Ross KN, Lander ES, Golub TR . A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Vlotides G, Cruz-Soto M, Rubinek T, Eigler T, Auernhammer CJ, Melmed S . Mechanisms for growth factor-induced pituitary tumor transforming gene-1 expression in pituitary folliculostellate TtT/GF cells. Mol Endocrinol 2006; 20: 3321ā€“3335.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Thompson AD 3rd, Kakar SS . Insulin and IGF-1 regulate the expression of the pituitary tumor transforming gene (PTTG) in breast tumor cells. FEBS Lett 2005; 579: 3195ā€“3200.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Vlotides G, Eigler T, Melmed S . Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 2007; 28: 165ā€“186.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Yu J, Henske EP . Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain. Cancer Res 2006; 66: 9461ā€“9466.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Yin Z, Williams-Simons L, Rawahneh L, Asa S, Kirschner LS . Development of a pituitary-specific cre line targeted to the Pit-1 lineage. Genesis 2008; 46: 37ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32: 148ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448: 439ā€“444.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Liang M, Liu J, Ji H, Chen M, Zhao Y, Li S et al. A Aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo. Tumour Biol 2015; 36: 7085ā€“7091.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Lin YH, Tian Y, Wang JS, Jiang YG, Luo Y, Chen YT . Pituitary tumor-transforming gene 1 regulates invasion of prostate cancer cells through MMP13. Tumour Biol 2015, e-pub ahead of print 23 July 2015.

  39. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem 2012; 287: 19516ā€“19527.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 2011; 121: 4712ā€“4721.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Lin Y, Jiang X, Shen Y, Li M, Ma H, Xing M et al. Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr Relat Cancer 2009; 16: 301ā€“310.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Musat M, Korbonits M, Kola B, Borboli N, Hanson MR, Nanzer AM et al. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 2005; 12: 423ā€“433.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA . Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013; 32: 1651ā€“1659.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002; 21: 3190ā€“3198.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006; 9: 459ā€“471.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Fedele M, Palmieri D, Fusco A . HMGA2: A pituitary tumour subtype-specific oncogene? Mol Cell Endocrinol 2010; 326: 19ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Cano DA, Soto-Moreno A, Leal-Cerro A . Genetically engineered mouse models of pituitary tumors. Front Oncol 2014; 4: 203.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Asa SL, Kelly MA, Grandy DK, Low MJ . Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 1999; 140: 5348ā€“5355.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997; 19: 103ā€“113.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Cruz-Soto ME, Scheiber MD, Gregerson KA, Boivin GP, Horseman ND . Pituitary tumorigenesis in prolactin gene-disrupted mice. Endocrinology 2002; 143: 4429ā€“4436.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Invest 2002; 110: 973ā€“981.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Lines KE, Stevenson M, Thakker RV . Animal models of pituitary neoplasia. Mol Cell Endocrinol 2016; 421: 68ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Kenerson H, Dundon TA, Yeung RS . Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 2005; 57: 67ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Lu C, Willingham MC, Furuya F, Cheng SY . Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors. Endocrinology 2008; 149: 3339ā€“3345.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Hikake T, Hayashi S, Iguchi T, Sato T . The role of IGF1 on the differentiation of prolactin secreting cells in the mouse anterior pituitary. J Endocrinol 2009; 203: 231ā€“240.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Pelletier G, Li S, Phaneuf D, Martel C, Labrie F . Morphological studies of prolactin-secreting cells in estrogen receptor alpha and estrogen receptor beta knockout mice. Neuroendocrinology 2003; 77: 324ā€“333.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Stefaneanu L, Powell-Braxton L, Won W, Chandrashekar V, Bartke A . Somatotroph and lactotroph changes in the adenohypophyses of mice with disrupted insulin-like growth factor I gene. Endocrinology 1999; 140: 3881ā€“3889.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007; 117: 730ā€“738.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Peng H, Liu J, Sun Q, Chen R, Wang Y, Duan J et al. mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development. Oncogene 2013; 32: 4702ā€“4711.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Ma J, Meng Y, Kwiatkowski DJ, Chen X, Peng H, Sun Q et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 2010; 120: 103ā€“114.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Zha X, Wang F, Wang Y, He S, Jing Y, Wu X et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res 2011; 71: 13ā€“18.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Lee L, Sudentas P, Donohue B, Asrican K, Worku A, Walker V et al. Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer 2005; 42: 213ā€“227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank the staff of Animal Center, and Department of Pathology, Peking Union Medical College (Beijing, China) for help with in vivo studies and instructions on pathological analysis. This work was supported by the National Basic Research Program of China (973 Program) (2015CB553802), the National Natural Science Foundation of China (81372861, 30788004), and the Ministry of Education of China (111 project: B08007).

Author contributions

RC and HZ designed experiments, analyzed results and supervised the project. RC, JD, LL, XZ and SZ performed the in vivo experiments, image processing and histological quantification. RC, QM, QS, JM, CL, XZ, HC and YJ performed in vitro experiments. RC and HZ wrote the manuscript with XW provided medical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Duan, J., Li, L. et al. mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene 36, 979ā€“988 (2017). https://doi.org/10.1038/onc.2016.264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.264

This article is cited by

Search

Quick links