Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway

Abstract

The Wnt/β-catenin pathway has important roles in chemoresistance and multidrug resistance 1 (MDR1) expression in some cancers, but its involvement in breast cancer and the underlying molecular mechanism are undefined. In this study, we demonstrated that the Wnt/β-catenin pathway is activated in chemoresistant breast cancer cells. Using a Wnt pathway-specific PCR array screening assay, we detected that Pygo2, a newly identified Wnt/β-catenin pathway component, was the most upregulated gene in the resistant cells. Additional experiments indicated that Pygo2 activated MDR1 expression in the resistant cells via the Wnt/β-catenin pathway. Moreover, the inhibition of Pygo2 expression restored the chemotherapeutic drug sensitivity of the resistant cells and reduced the breast cancer stem cell population in these cells in response to chemotherapy. Importantly, these activities induced by Pygo2 were mediated by MDR1. We also determined the effect of Pygo2 on the sensitivity of breast tumors resistant to doxorubicin in a mouse model. Finally, RNA samples from 64 paired patient tumors (before and after chemotherapy) highly and significantly overexpressed Pygo2 and/or MDR1 after treatment, thus underlining a pivotal role for the Pygo2-mediated Wnt/β-catenin pathway in the clinical chemoresistance of breast cancer. Our data represent the first implication of the Wnt/β-catenin pathway in breast cancer chemoresistance and identify potential new targets to treat the recurrence of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zardawi SJ, O'Toole SA, Sutherland RL, Musgrove EA . Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 2009; 24: 385–398.

    CAS  PubMed  Google Scholar 

  2. Haber M, Bordow SB, Haber PS, Marshall GM, Stewart BW, Norris MD . The prognostic value of MDR1 gene expression in primary untreated neuroblastoma. Eur J Cancer 1997; 33: 2031–2036.

    Article  CAS  PubMed  Google Scholar 

  3. Blanc E, Goldschneider D, Ferrandis E, Barrois M, Le Roux G, Leonce S et al. MYCN enhances P-gp/MDR1 gene expression in the human metastatic neuroblastoma IGR-N-91 model. Am J Pathol 2003; 163: 321–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munoz M, Henderson M, Haber M, Norris M . Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 2007; 59: 752–757.

    Article  CAS  PubMed  Google Scholar 

  5. Han CY, Cho KB, Choi HS, Han HK, Kang KW . Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 2008; 29: 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  6. Wodarz A, Nusse R . Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: 59–88.

    Article  CAS  PubMed  Google Scholar 

  7. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  8. Lustig B, Behrens J . The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129: 199–221.

    CAS  PubMed  Google Scholar 

  9. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108: 837–847.

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res 2000; 60: 4761–4766.

    CAS  PubMed  Google Scholar 

  12. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D et al. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene 2009; 28: 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  13. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002; 109: 47–60.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M . A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 2002; 4: 367–373.

    Article  CAS  PubMed  Google Scholar 

  15. Townsley FM, Cliffe A, Bienz M . Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 2004; 6: 626–633.

    Article  CAS  PubMed  Google Scholar 

  16. Krieghoff E, Behrens J, Mayr B . Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 2006; 119: 1453–1463.

    Article  CAS  PubMed  Google Scholar 

  17. Andrews PG, He Z, Popadiuk C, Kao KR . The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422: 493–501.

    Article  CAS  PubMed  Google Scholar 

  18. Carrera I, Janody F, Leeds N, Duveau F, Treisman JE . Pygopus activates wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci USA 2008; 105: 6644–6649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright KJ, Tjian R . Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo. Proc Natl Acad Sci USA 2009; 106: 55–60.

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Luo Q, Yuan Y, Huang X, Cai W, Li C et al. Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol 2010; 30: 5621–5635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 2009; 185: 811–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cantu C, Valenta T, Hausmann G, Vilain N, Aguet M, Basler K . The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development 2013; 140: 2377–2386.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe K, Fallahi M, Dai X . Chromatin effector Pygo2 regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. Oncogene 2014; 33: 632–642.

    Article  CAS  PubMed  Google Scholar 

  24. Sun P, Watanabe K, Fallahi M, Lee B, Afetian ME, Rheaume C et al. Pygo2 regulates beta-catenin-induced activation of hair follicle stem/progenitor cells and skin hyperplasia. Proc Natl Acad Sci USA 2014; 111: 10215–10220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li B, Rheaume C, Teng A, Bilanchone V, Munguia JE, Hu M et al. Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis 2007; 45: 318–325.

    Article  CAS  PubMed  Google Scholar 

  26. Gu B, Watanabe K, Sun P, Fallahi M, Dai X . Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells. Cell Stem Cell 2013; 13: 48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrews PG, Lake BB, Popadiuk C, Kao KR . Requirement of Pygopus 2 in breast cancer. Int J Oncol 2007; 30: 357–363.

    CAS  PubMed  Google Scholar 

  28. Popadiuk CM, Xiong J, Wells MG, Andrews PG, Dankwa K, Hirasawa K . Antisense suppression of pygopus2 results in growth arrest of epithelial ovarian cancer. Clin Cancer Res 2006; 12: 2216–2223.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Dong QZ, Wang S, Fang CQ, Miao Y, Wang L et al. Abnormal expression of Pygopus 2 correlates with a malignant phenotype in human lung cancer. BMC Cancer 2013; 13: 346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang ZX, Chen YY, Li BA, Tan GW, Liu XY, Shen SH et al. Decreased pygopus 2 expression suppresses glioblastoma U251 cell growth. J Neurooncol 2010; 100: 31–41.

    Article  PubMed  Google Scholar 

  31. Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A et al. Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol 2013; 30: 516.

    Article  PubMed  Google Scholar 

  32. Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 2004; 6: 497–506.

    Article  CAS  PubMed  Google Scholar 

  33. Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C et al. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol 2004; 25: 1337–1342.

    CAS  PubMed  Google Scholar 

  34. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 2006; 25: 3479–3488.

    Article  CAS  PubMed  Google Scholar 

  35. Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S et al. Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 2003; 94: 515–518.

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Cao P, Xie Z . Relation of promoter methylation of mdr-1 gene and histone acetylation status with multidrug resistance in MCF-7/Adr cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2009; 34: 369–374.

    CAS  PubMed  Google Scholar 

  37. Abdullah LN, Chow EK . Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cai WY, Wei TZ, Luo QC, Wu QW, Liu QF, Yang M et al. The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci 2013; 126: 2877–2889.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the ‘973’ Project of the Ministry of Science and Technology (grant numbers 2013CB530600 to B-AL); the National Natural Science Foundation of China (grant numbers U1205023, 81472457, 81201616, 81201617 and 81272384 to B-AL, Q-CL and Q-FL); the Health-Education Joint Research Project of Fujian Province (grant numbers WKJ-FJ-23 to B-AL and Z-MZ); the Major Project of Science and Technology from the Department of Education (grant number 313051 to B-AL); the Natural Science Foundation of Fujian Province(grant numbers 2011D017 to Z-MZ); the Science and Technology Program of Xiamen (grant numbers 3502Z20114003 to H-QS) and ‘Project 111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education (grant number B06016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-Q She or B-A Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZM., Wu, JF., Luo, QC. et al. Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway. Oncogene 35, 4787–4797 (2016). https://doi.org/10.1038/onc.2016.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.10

This article is cited by

Search

Quick links