Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma

Abstract

Cancer stem cells (CSCs) are a promising target for cancer therapy, particularly for metastatic lung cancers, but how CSCs are regulated is largely unknown. We identify two proteins, SLUG (encoded by SNAI2 gene) and SOX9, which are associated with advanced stage lung cancers and are implicated in the regulation of CSCs. Inhibition of either SLUG or SOX9 sufficiently inhibits CSCs in human lung cancer cells and attenuates experimental lung metastasis in a xenograft mouse model. Correlation between SLUG and SOX9 levels was observed remarkably, we therefore sought to explore their mechanistic relationship and regulation. SLUG, beyond its known function as an epithelial–mesenchymal transition transcription factor, was found to regulate SOX9 by controlling its stability via a post-translational modification process. SLUG interacts directly with SOX9 and prevents it from ubiquitin-mediated proteasomal degradation. SLUG expression and binding are necessary for SOX9 promotion of lung CSCs and metastasis in a mouse model. Together, our findings provide a novel mechanistic insight into the regulation of CSCs via SLUG-SOX9 regulatory axis, which represents a potential novel target for CSC therapy that may overcome cancer chemoresistance and relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Esposito L, Conti D, Ailavajhala R, Khalil N, Giordano A . Lung cancer: are we up to the challenge? Curr Genomics 2010; 11: 513–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crino L, Weder W, van Meerbeeck J, Felip E . Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21: V103–V115.

    Article  PubMed  Google Scholar 

  3. Riihimaki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundkist J et al. Metastatic sites and survival in lung cancer. Lung Cancer 2014; 86: 78–84.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hajk M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  Google Scholar 

  5. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  8. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumor initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  9. Luanpitpong S, Wang L, Castranova V, Rojanasakul Y . Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes. Part Fibre Toxicol 2014; 11: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012; 481: 85–89.

    Article  CAS  Google Scholar 

  11. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010; 16: 45–55.

    Article  CAS  PubMed  Google Scholar 

  12. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 2011; 71: 3991–4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan Y, Chen B, Xu W, Zhao W, Wu J . Clinicopathological significance of CD133 in lung cancer: a meta-analysis. Mol Clin Oncol 2014; 2: 111–115.

    Article  PubMed  Google Scholar 

  14. Tsai JH, Yang J . Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27: 2192–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nurwidya F, Takahashi F, Murakami A, Takahashi K . Epithelial mesencymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat 2012; 44: 151–156.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nieto MA . The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  17. Shih JY, Tsai MF, Chang YL, Yuan A, Yu CJ, Lin SB et al. Transcription repressor Slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 2005; 11: 8070–8078.

    Article  CAS  PubMed  Google Scholar 

  18. Shih JY, Yang PC . The EMT regulator Slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  19. Philips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S et al. Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cells Rep 2014; 2: 633–647.

    Article  Google Scholar 

  20. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cronin JC, Watkins-Chow DE, Incao A, Hasskamp JH, Schonewolf N, Aoude LG et al. SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis. Cancer Res 2013; 73: 5709–5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lefebvre V, Dumitrui B, Penzo-Mendez A, Han Y, Pallavi B . Control of cell fate and differentiation by Sry-related high mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 2007; 39: 2195–2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turcatel G, Rubin N, Menke DB, Martin G, Shi W, Warburton D . Lung mesenchymal expression of Sox9 plays a critical role in tracheal development. BMC Biol 2013; 11: 117.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang SS, Fang WT, Hou YH, Huang SF, Yen BL, Chang JL et al. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clin Cancer Res 2010; 16: 4363–4373.

    Article  CAS  PubMed  Google Scholar 

  25. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE . Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 2008; 3: e3077.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313–323.

    Article  CAS  PubMed  Google Scholar 

  29. Darnell GA, Antallis TM, Johnstone RW, Stringer BW, Ogbourne SM, Harrich D et al. Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif. Mol Cell Biol 2003; 23: 6520–6532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng Y, Wang B, Jayappa KD, Yao X . Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem 2011; 286: 17722–17735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L et al. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Cell Biol 2013; 24: 858–869.

    Article  CAS  Google Scholar 

  32. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC . Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009; 33: 517–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhattacharya S, Yu H, Mim C, Matouschek A . Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 2014; 15: 122–133.

    Article  Google Scholar 

  34. Mani A, Gelmann EP . The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23: 4776–4789.

    Article  CAS  PubMed  Google Scholar 

  35. Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM . A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002; 416: 763–767.

    Article  CAS  PubMed  Google Scholar 

  36. Krueger KE, Srivastava S . Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 2006; 5: 1799–1810.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547–559.

    Article  CAS  PubMed  Google Scholar 

  38. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R Jr, Badve S et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10: 411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rockich BE, Hrycaj SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL et al. Sox9 plays multiple role in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci USA 2013; 110: E4456–E4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding GX, Liu J, Feng CC, Jiang HW, Xu JF, Ding Q . Slug regulates cyclin D1 expression by ubiquitin-proteasome pathway in prostate cancer cells. Panminerva Med 2012; 54: 219–223.

    CAS  PubMed  Google Scholar 

  41. Hasan MR, Sharma R, Saraya A, Chattopadhyay TK, DattaGupta S, Walfish PG et al. Slug is a predictor of poor prognosis in esophageal squamous cell carcinoma patients. PLoS One 2013; 8: e82846.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cates JM, Byrd RH, Fohn LE, Tatsas AD, Washington MK, Black CC . Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas 2009; 38: e1–e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chakravarty G, Moroz K, Makridakis NM, Lloyd SA, Galvez SE, Canavello PR et al. Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Exp Biol Med 2011; 236: 141–155.

    Article  Google Scholar 

  44. Chakravarty G, Rider B, Mondal D . Cytoplasmic compartmentalization of SOX9 abrogates the growth arrest response of breast cancer cells that can be rescued by trichostatin A treatment. Cancer Biol Ther 2011; 11: 71–83.

    Article  CAS  PubMed  Google Scholar 

  45. Dikic I, Wakatsuki S, Walters KJ . Ubiquitin-binding domains-from structures to functions. Nat Rev Mol Cell Biol 2009; 10: 659–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levina V, Marrangnoi A, Wang T, Parikh S, Su Y, Herberman R et al. Elimination of human lung cancer stem cells through targeting of the stem cell factor–c- kit autocrine signaling loop. Cancer Res 2010; 70: 338–346.

    Article  CAS  PubMed  Google Scholar 

  47. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kajita M, McClinic KN, Wade PA . Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu Z, Gao X, He Y, Ju J, Zhang M, Liu R et al. Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression. PLoS One 2012; 7: e34327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH; R01-ES022968), National Science Foundation (CBET-1434503) and Mary Babb Randolph Cancer Center (MBRCC) Sara C Allen Lung and James F Allen Comp Lung Cancer Research Fund. Flow cytometric analysis was performed in the WVU Flow Cytometry Core Facility, which is supported in part by the NIH Grant P30 GM103488. Animal experiments were performed in the WVU Animal Models and Imaging Facility, which is supported in part by the MBRCC and NIH Grants P20 RR016440, P30 RR032138/GM103488 and S10 RR026378. We would like to acknowledge the WVU Pathology Laboratory for Translational Medicine for tissue sectioning and staining services and Drs Davor Solter and Barbara Knowles for their comments on the manuscript. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Luanpitpong or Y Rojanasakul.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luanpitpong, S., Li, J., Manke, A. et al. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 35, 2824–2833 (2016). https://doi.org/10.1038/onc.2015.351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.351

This article is cited by

Search

Quick links