Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RUNX3 is a novel negative regulator of oncogenic TEAD–YAP complex in gastric cancer

Subjects

Abstract

Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD–YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD–YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD–YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD–YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD–YAP oncogenic complex in gastric carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shah MA, Ajani JA . Gastric cancer—an enigmatic and heterogeneous disease. JAMA 2010; 303: 1753–1754.

    Article  CAS  PubMed  Google Scholar 

  2. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002; 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  3. Fan XY, Hu XL, Han TM, Wang NN, Zhu YM, Hu W et al. Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis. BMC Gastroenterol 2011; 11: 92.

    Article  CAS  PubMed  Google Scholar 

  4. Ito Y, Bae SC, Chuang LS . The RUNX family: developmental regulators in cancer. Nat Rev Cancer 2015; 15: 81–95.

    Article  CAS  PubMed  Google Scholar 

  5. Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol 2005; 25: 8097–8107.

    Article  CAS  PubMed  Google Scholar 

  6. Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K et al. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 2006; 26: 4474–4488.

    Article  CAS  PubMed  Google Scholar 

  7. Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS et al. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 2008; 14: 226–237.

    Article  CAS  PubMed  Google Scholar 

  8. Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 2013; 24: 603–616.

    Article  PubMed  Google Scholar 

  9. Sudol M . Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 1994; 9: 2145–2152.

    CAS  Google Scholar 

  10. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y . A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 1999; 18: 2551–2562.

    Article  CAS  PubMed  Google Scholar 

  11. Huang J, Wu S, Barrera J, Matthews K, Pan D . The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005; 122: 421–434.

    Article  CAS  Google Scholar 

  12. Lim B, Park JL, Kim HJ, Park YK, Kim JH, Sohn HA et al. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis 2013; 35: 1020–1027.

    Article  PubMed  Google Scholar 

  13. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  PubMed  Google Scholar 

  14. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML . TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15: 1229–1241.

    Article  CAS  PubMed  Google Scholar 

  15. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 2014; 158: 171–184.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Wang Z, Zhang W, Qian K, Liao G, Xu W et al. VGLL4 inhibits EMT in part through suppressing Wnt/beta-catenin signaling pathway in gastric cancer. Med Oncol 2015; 32: 83.

    Article  CAS  PubMed  Google Scholar 

  17. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    Article  CAS  PubMed  Google Scholar 

  19. Avruch J, Zhou D, Bardeesy N . YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle 2012; 11: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  20. Lai D, Ho KC, Hao Y, Yang X . Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 2011; 71: 2728–2738.

    Article  CAS  Google Scholar 

  21. Jiang CG, Lv L, Liu FR, Wang ZN, Liu FN, Li YS et al. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination. Mol Cancer 2011; 10: 122.

    Article  CAS  PubMed  Google Scholar 

  22. Lin MT, Zuon CY, Chang CC, Chen ST, Chen CP, Lin BR et al. Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res 2005; 11: 5809–5820.

    Article  CAS  Google Scholar 

  23. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014; 25: 166–180.

    Article  CAS  PubMed  Google Scholar 

  24. Chen HI, Sudol M . The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci USA 1995; 92: 7819–7823.

    Article  CAS  Google Scholar 

  25. Bork P, Sudol M . The WW domain: a signalling site in dystrophin? Trends Biochem Sci 1994; 19: 531–533.

    Article  CAS  PubMed  Google Scholar 

  26. Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 2004; 23: 790–799.

    Article  CAS  PubMed  Google Scholar 

  27. Brusgard JL, Choe M, Chumsri S, Renoud K, MacKerell AD Jr, Sudol M et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumosphere formation in breast cancer cells. Oncotarget 2015. in press.

  28. Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao X, Veeraraghavan S . Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci USA 2006; 103: 17225–17230.

    Article  CAS  PubMed  Google Scholar 

  29. Koh CP, Wang CQ, Ng CE, Ito Y, Araki M, Tergaonkar V et al. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia 2013; 27: 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  30. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012; 486: 353–360.

    Article  CAS  PubMed  Google Scholar 

  31. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474: 179–183.

    Article  CAS  PubMed  Google Scholar 

  32. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 2009; 5: e1000676.

    Article  PubMed  Google Scholar 

  33. Lin YT, Ding JY, Li MY, Yeh TS, Wang TW, Yu JY . YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res 2012; 318: 1877–1888.

    Article  CAS  PubMed  Google Scholar 

  34. Huang B, Qu Z, Ong CW, Tsang YH, Xiao G, Shapiro D et al. RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene 2012; 31: 527–534.

    Article  CAS  Google Scholar 

  35. Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS et al. Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells 2012; 30: 2088–2099.

    Article  CAS  PubMed  Google Scholar 

  36. Yamada C, Ozaki T, Ando K, Suenaga Y, Inoue K, Ito Y et al. RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. J Biol Chem 2010; 285: 16693–16703.

    Article  CAS  PubMed  Google Scholar 

  37. Wang CQ, Krishnan V, Tay LS, Chin DW, Koh CP, Chooi JY et al. Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Rep 2014; 8: 767–782.

    Article  CAS  Google Scholar 

  38. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 2014; 158: 157–170.

    Article  CAS  PubMed  Google Scholar 

  39. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 2010; 19: 831–844.

    Article  CAS  Google Scholar 

  40. Karagiannis GS, Petraki C, Prassas I, Saraon P, Musrap N, Dimitromanolakis A et al. Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget 2012; 3: 267–285.

    Article  PubMed  Google Scholar 

  41. Chakraborty PK, Zhang Y, Coomes AS, Kim WJ, Stupay R, Lynch LD et al. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res 2014; 74: 3489–3500.

    Article  CAS  PubMed  Google Scholar 

  42. Fukumoto Y, Kurita S, Takai Y, Ogita H . Role of scaffold protein afadin dilute domain-interacting protein (ADIP) in platelet-derived growth factor-induced cell movement by activating Rac protein through Vav2 protein. J Biol Chem 2011; 286: 43537–43548.

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Lin Y, Zhang Y, Zhu Z, Huo K . SSX2IP promotes metastasis and chemotherapeutic resistance of hepatocellular carcinoma. J Transl Med 2013; 11: 52.

    Article  PubMed  Google Scholar 

  44. Rho SB, Byun HJ, Park SY, Chun T . Calpain 6 supports tumorigenesis by inhibiting apoptosis and facilitating angiogenesis. Cancer Lett 2008; 271: 306–313.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 2011; 25: 51–63.

    Article  PubMed  Google Scholar 

  46. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W . Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286: 7018–7026.

    Article  CAS  PubMed  Google Scholar 

  47. Oka T, Schmitt AP, Sudol M . Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 2012; 31: 128–134.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 2014; 24: 331–343.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao B, Li L, Lei Q, Guan KL . The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–874.

    Article  CAS  PubMed  Google Scholar 

  50. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO . The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 2012; 109: E2441–E2450.

    Article  CAS  PubMed  Google Scholar 

  51. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012; 44: 570–574.

    Article  CAS  PubMed  Google Scholar 

  52. Tsutsumi R, Masoudi M, Takahashi A, Fujii Y, Hayashi T, Kikuchi I et al. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell 2013; 26: 658–665.

    Article  CAS  Google Scholar 

  53. Lochhead P, El-Omar EM . Gastric cancer. Br Med Bull 2008; 85: 87–100.

    Article  PubMed  Google Scholar 

  54. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 2010; 29: 5643–5650.

    Article  CAS  PubMed  Google Scholar 

  55. Cinghu S, Goh YM, Oh BC, Lee YS, Lee OJ, Devaraj H et al. Phosphorylation of the gastric tumor suppressor RUNX3 following H. pylori infection results in its localization to the cytoplasm. J Cell Physiol 2012; 227: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  56. Min B, Kim MK, Zhang JW, Kim J, Chung KC, Oh BC et al. Identification of RUNX3 as a component of the MST/Hpo signaling pathway. J Cell Physiol 2012; 227: 839–849.

    Article  CAS  PubMed  Google Scholar 

  57. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  PubMed  Google Scholar 

  58. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X et al. SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 2013; 152: 831–843.

    Article  CAS  PubMed  Google Scholar 

  59. Dembele D, Kastner P . Fold change rank ordering statistics: a new method for detecting differentially expressed genes. BMC Bioinformatics 2014; 15: 14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative. The study was also supported by the Singapore National Research Foundation under its Translational and Clinical Research Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (Grants NMRC/TCR/001/2007 and NMRC/TCR/009-NUHS/2013). M Sudol was supported by seed grants from The NUS-Medical School, MBI and IMCB A*STAR. We are grateful to Professor Stefano Piccolo for providing us the 8xGTIIC-luciferase plasmid via Addgene. We also thank Professor Kunliang Guan for providing us myc-TEAD1 plasmid via Addgene. We acknowledge valuable comments on the manuscript from Dr Megan Finch-Edmondson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ito.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Lin, S., Chen, Y. et al. RUNX3 is a novel negative regulator of oncogenic TEAD–YAP complex in gastric cancer. Oncogene 35, 2664–2674 (2016). https://doi.org/10.1038/onc.2015.338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.338

This article is cited by

Search

Quick links