Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells

Subjects

Abstract

Oncolytic human herpes simplex virus type 1 (HSV-1) shows promising treatment efficacy in late-stage clinical trials. The anticancer activity of oncolytic viruses relies on deregulated pathways in cancer cells, which make them permissive to oncolysis. To identify pathways that restrict HSV-1 KM100-mediated oncolysis, this study used a pooled genome-wide short hairpin RNA library and found that depletion of the splicing factor arginine-rich splicing factor 2 (SRSF2) leads to enhanced cytotoxicity of breast cancer cells by KM100. Serine/arginine-rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing. Further characterization showed that KM100 infection of HS578T cells under conditions of low SRSF2 leads to pronounced apoptosis without a corresponding increase in virus replication. As DNA topoisomerase I inhibitors can limit the phosphorylation of SRSF2, we combined a topoisomerase I inhibitor chemotherapeutic with KM100 and observed synergistic anticancer effect in vitro and prolonged survival of tumor-bearing mice in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Russell SJ, Peng K-W, Bell JC . Oncolytic virotherapy. Nat Biotechnol 2012; 30: 658–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Workenhe ST, Mossman KL . Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol Ther 2013; 22: 251–256.

    Article  PubMed  Google Scholar 

  3. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  4. Hummel J, Safroneeva E, Mossman K . The role of ICP0-null HSV-1 and interferon signaling defects in the effective treatment of breast adenocarcinoma. Mol Ther 2005; 12: 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  5. Workenhe ST, Simmons G, Pol JG, Lichty BD, Halford WP, Mossman KL . Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy. Mol Ther 2014; 22: 123–131.

    Article  CAS  PubMed  Google Scholar 

  6. Workenhe ST, Pol JG, Lichty BD, Cummings DT, Mossman KL . Combining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy. Cancer Immunol Res 2013; 1: 309–319.

    Article  CAS  PubMed  Google Scholar 

  7. Diallo J-S, Boeuf FL, Lai F, Cox J, Vaha-Koskela M, Abdelbary H et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol Ther 2010; 18: 1123–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL . Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther 2010; 19: 335–344.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Twyffels L, Gueydan C, Kruys V . Shuttling SR proteins: more than splicing factors. FEBS J 2011; 278: 3246–3255.

    Article  CAS  PubMed  Google Scholar 

  10. Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 2012; 19: 220–228.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Walsh D, Mohr I . Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 2011; 9: 860–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walsh D, Mohr I . Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev 2004; 18: 660–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moorman NJ, Shenk T . Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. J Virol 2010; 84: 5260–5269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rossi F, Labourier E, Forné T, Divita G, Derancourt J, Riou JF et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 1996; 381: 80–82.

    Article  CAS  PubMed  Google Scholar 

  15. Pilch B, Allemand E, Facompré M, Bailly C, Riou JF, Soret J et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res 2001; 61: 6876–6884.

    CAS  PubMed  Google Scholar 

  16. Soret J, Gabut M, Dupon C, Kohlhagen G, Stévenin J, Pommier Y et al. Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in mammalian cells lacking topoisomerase I. Cancer Res 2003; 63: 8203–8211.

    CAS  PubMed  Google Scholar 

  17. Ciomei M, Croci V, Ciavolella A, Ballinari D, Pesenti E . Antitumor efficacy of edotecarin as a single agent and in combination with chemotherapy agents in a xenograft model. Clin Cancer Res 2006; 12: 2856–2861.

    Article  CAS  PubMed  Google Scholar 

  18. Solier S, Barb J, Zeeberg BR, Varma S, Ryan MC, Kohn KW et al. Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors. Cancer Res 2010; 70: 8055–8065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  20. Ketela T, Heisler LE, Brown KR, Ammar R, Kasimer D, Surendra A et al. A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genom 2011; 12: 213.

    Article  CAS  Google Scholar 

  21. Mahoney DJ, Stojdl DF . A call to arms: using RNAi screening to improve oncolytic viral therapy. Cytokine Growth Factor Rev 2010; 21: 161–167.

    Article  CAS  PubMed  Google Scholar 

  22. Edmond V, Moysan E, Khochbin S, Matthias P, Brambilla C, Brambilla E et al. Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J 2010; 30: 510–523.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14: 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tahara M, Inoue T, Miyakura Y, Horie H, Yasuda Y, Fujii H et al. Cell diameter measurements obtained with a handheld cell counter could be used as a surrogate marker of G2/M arrest and apoptosis in colon cancer cell lines exposed to SN-38. Biochem Biophys Res Commun 2013; 434: 753–759.

    Article  CAS  PubMed  Google Scholar 

  25. Ueno M, Nonaka S, Yamazaki R, Deguchi N, Murai M . SN-38 induces cell cycle arrest and apoptosis in human testicular cancer. Eur Urol 2002; 42: 390–397.

    Article  CAS  PubMed  Google Scholar 

  26. Ilkow CS, Swift SL, Bell JC, Diallo J-S . From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathogen 2014; 10: e1003836.

    Article  Google Scholar 

  27. Stickeler E, Kittrell F, Medina D, Berget SM . Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 1999; 18: 3574–3582.

    Article  CAS  PubMed  Google Scholar 

  28. Quidville V, Alsafadi S, Goubar A, Commo F, Scott V, Pioche-Durieu C et al. Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. Cancer Res 2013; 73: 2247–2258.

    Article  CAS  PubMed  Google Scholar 

  29. Edmond V, Merdzhanova G, Gout S, Brambilla E, Gazzeri S, Eymin B . A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors. Cell Cycle 2013; 12: 1267–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Manley JL . Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 2013; 3: 1228–1237.

    Article  CAS  PubMed  Google Scholar 

  31. Bonnal S, Vigevani L, Valcárcel JVA . The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 2012; 11: 847–859.

    Article  CAS  PubMed  Google Scholar 

  32. Vanderbeeken M-C, Aftimos PG, Awada A . Topoisomerase inhibitors in metastatic breast cancer: overview of current practice and future development. Curr Breast Cancer Rep 2013; 5: 31–41.

    Article  CAS  Google Scholar 

  33. Kümler I, Brünner N, Stenvang J, Balslev E, Nielsen DL . A systematic review on topoisomerase 1 inhibition in the treatment of metastatic breast cancer. Breast Cancer Res Treat 2013; 138: 347–358.

    Article  PubMed  Google Scholar 

  34. Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP et al. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 2014; 20: 6479–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 2000; 165: 5133–5142.

    Article  CAS  PubMed  Google Scholar 

  36. Mossman KL, Smiley JR . Truncation of the C-terminal acidic transcriptional activation domain of herpes simplex virus VP16 renders expression of the immediate-early genes almost entirely dependent on ICP0. J Virol 1999; 73: 9726–9733.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  38. Chou T-C, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  39. Cheema TA, Kanai R, Kim GW, Wakimoto H, Passer B, Rabkin SD et al. Enhanced antitumor efficacy of low-dose etoposide with oncolytic herpes simplex virus in human glioblastoma stem cell xenografts. Clin Cancer Res 2011; 17: 7383–7393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Workenhe ST, Wadowska DW, Wright GM, Kibenge MJ, Kibenge FS . Demonstration of infectious salmon anaemia virus (ISAV) endocytosis in erythrocytes of Atlantic salmon. Virol J 2007; 4: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Workenhe ST, Hori TS, Rise ML, Kibenge MJ, Kibenge FS . Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar macrophage/dendritic-like cell line TO, assessed using genomic techniques. Mol Immunol 2009; 46: 2955–2974.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by operating grants to KLM from the Cancer Research Society and the Canadian Cancer Society Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S T Workenhe or K L Mossman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Workenhe, S., Ketela, T., Moffat, J. et al. Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells. Oncogene 35, 2465–2474 (2016). https://doi.org/10.1038/onc.2015.303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.303

This article is cited by

Search

Quick links