Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

Abstract

Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Hillsley MV, Frangos JA . Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 1994; 43: 573–581.

    Article  CAS  PubMed  Google Scholar 

  2. Fritton SP, Weinbaum S . Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech 2009; 41: 347–374.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chary SR, Jain RK . Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 1989; 86: 5385–5389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qazi H, Shi ZD, Tarbell JM . Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS ONE 2011; 6: e20348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M . Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 2002; 62: 6731–6739.

    CAS  PubMed  Google Scholar 

  6. Tang C-H . Molecular mechanisms of chondrosarcoma metastasis. BioMedicine 2012; 2: 92–98.

    Article  CAS  Google Scholar 

  7. Aigner T, Muller S, Neureiter D, Illstrup DM, Kirchner T, Bjornsson J . Prognostic relevance of cell biologic and biochemical features in conventional chondrosarcomas. Cancer 2002; 94: 2273–2281.

    Article  PubMed  Google Scholar 

  8. Soderstrom M, Aro HT, Ahonen M, Johansson N, Aho A, Ekfors T et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human chondrosarcomas. APMIS 2001; 109: 305–315.

    Article  CAS  PubMed  Google Scholar 

  9. Berend KR, Toth AP, Harrelson JM, Layfield LJ, Hey LA, Scully SP . Association between ratio of matrix metalloproteinase-1 to tissue inhibitor of metalloproteinase-1 and local recurrence, metastasis, and survival in human chondrosarcoma. J Bone Joint Surg Am 1998; 80: 11–17.

    Article  CAS  PubMed  Google Scholar 

  10. Kerkela E, Bohling T, Herva R, Uria JA, Saarialho-Kere U . Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone 2001; 29: 487–493.

    Article  CAS  PubMed  Google Scholar 

  11. Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong VW . Tenascin-C Stimulates Glioma Cell Invasion through Matrix Metalloproteinase-12. Cancer Res 2006; 66: 11771–11780.

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Dong Y, Zhao J, Sun H, Deng Y, Fan J et al. Increased expression of human macrophage metalloelastase (MMP-12) is associated with the invasion of endometrial adenocarcinoma. Pathol Res Pract 2007; 203: 499–505.

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 2005; 11: 1086–1092.

    CAS  PubMed  Google Scholar 

  14. Yang W, Arii S, Gorrin-Rivas MJ, Mori A, Onodera H, Imamura M . Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 2001; 91: 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  15. Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 2006; 66: 6149–6155.

    Article  CAS  PubMed  Google Scholar 

  16. Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U et al. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 2010; 49: 40–51.

    Article  CAS  PubMed  Google Scholar 

  17. Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 2008; 105: 3927–3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW et al. Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci USA 2005; 102: 14010–14015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu F, Wang P, Kontrogianni-Konstantopoulos A, Konstantopoulos K . Prostaglandin (PG)D2 and 15-deoxy-[Delta]12,14-PGJ2, but not PGE2, mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases. Cell Death Differ 2010; 17: 1325–1334.

    Article  PubMed  Google Scholar 

  20. Wang P, Zhu F, Konstantopoulos K . The antagonistic actions of endogenous interleukin-1beta and 15-deoxy-Delta12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 2012; 287: 31877–31893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM . 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83: 803–812.

    Article  CAS  PubMed  Google Scholar 

  22. Balzer EM, Tong Z, Paul CD, Hung W-C, Stroka KM, Boggs AE et al. Physical confinement alters tumor cell adhesion and migration phenotypes. Faseb J 2012; 26: 4045–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K . Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep 2013; 3: 1870.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 2013; 202: 807–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong ZQ, Balzer EM, Dallas MR, Hung W-C, Stebe KJ, Konstantopoulos K . Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS ONE 2012; 7: e29211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 2014; 157: 611–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J 2012; 26: 2648–2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rago C, Huso DL, Diehl F, Karim B, Liu G, Papadopoulos N et al. Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res 2007; 67: 9364–9370.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng P, Jiang FH, Zhao LM, Dai Q, Yang WY, Zhu LM et al. Human macrophage metalloelastase correlates with angiogenesis and prognosis of gastric carcinoma. Dig Dis Sci 2010; 55: 3138–3146.

    Article  CAS  PubMed  Google Scholar 

  30. dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D'Amore PA . Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 2012; 125: 831–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milkiewicz M, Brown MD, Egginton S, Hudlicka O . Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 2001; 8: 229–241.

    Article  CAS  PubMed  Google Scholar 

  32. Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998; 153: 103–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL et al. VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 2001; 193: 325–332.

    Article  CAS  PubMed  Google Scholar 

  34. Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 2012; 21: 181–195.

    Article  CAS  PubMed  Google Scholar 

  35. Chao W, D'Amore PA . IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 2008; 19: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamamura K, Zhang P, Yokota H . IGF2-driven PI3 kinase and TGFbeta signaling pathways in chondrogenesis. Cell Biology Int 2008; 32: 1238–1246.

    Article  CAS  Google Scholar 

  37. Jia H, Bagherzadeh A, Bicknell R, Duchen MR, Liu D, Zachary I . Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 2004; 279: 36148–36157.

    Article  CAS  PubMed  Google Scholar 

  38. Yilmaz A, Kliche S, Mayr-Beyrle U, Fellbrich G, Waltenberger J . p38 MAPK inhibition is critically involved in VEGFR-2-mediated endothelial cell survival. Biochem Biophys Res Commun 2003; 306: 730–736.

    Article  CAS  PubMed  Google Scholar 

  39. Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA . The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 2005; 169: 191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rutkowski JM, Swartz MA . A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 2007; 17: 44–50.

    Article  CAS  PubMed  Google Scholar 

  41. Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.

    Article  CAS  PubMed  Google Scholar 

  42. Jain RK, Tong RT, Munn LL . Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 2007; 67: 2729–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Healy ZR, Zhu F, Stull JD, Konstantopoulos K . Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBPbeta-dependent pathway. Am J Physiol Cell Physiol 2008; 294: C1146–C1157.

    Article  CAS  PubMed  Google Scholar 

  44. Abulencia JP, Gaspard R, Healy ZR, Gaarde WA, Quackenbush J, Konstantopoulos K . Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells. J Biol Chem 2003; 278: 28388–28394.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part or in whole by the NCI (R01 CA186286, U54 CA143868), the Kleberg Foundation, the National Science Foundation (1159823), the Natural Science Foundation of China (31300777), the Fundamental Research Funds of China (N120520001, N120320001 and N130120002) and the Liaoning Provincial Talent Support Program (LJQ2013029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Wang or K Konstantopoulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, SH., Hung, WC. et al. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene 34, 4558–4569 (2015). https://doi.org/10.1038/onc.2014.397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.397

This article is cited by

Search

Quick links