Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis

Abstract

The three PRL (phosphatases of regenerating liver) protein tyrosine phosphatases (PRL-1, -2 and -3) have been identified as key contributors to metastasis in several human cancers, yet the molecular basis of their pro-oncogenic property is unclear. Among the subfamily of PRL phosphatases, overexpression of PRL-2 in breast cancer cells has been shown to promote tumor growth by a mechanism that remains to be uncovered. Here we show that PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3. We further reveal that CNNM3 is not a phosphorylated substrate of PRL-2, and that the interaction occurs through a loop unique to the CBS pair domains of CNNM3 that exists only in organisms having PRL orthologs. Supporting the role of PRL-2 in cellular magnesium transport is the observation that PRL-2 knockdown results in a substantial decrease of cellular magnesium influx. Furthermore, in PRL-2 knockout mice, serum magnesium levels were significantly elevated as compared with control animals, indicating a pivotal role for PRL-2 in regulating cellular magnesium homeostasis. Although the expression levels of CNNM3 remained unchanged after magnesium depletion of various cancer cell lines, the interaction between endogenous PRL-2 and CNNM3 was markedly increased. Importantly, xenograft tumor assays with CNNM3 and a mutant form that does not associate with PRL-2 confirm that CNNM3 is itself pro-oncogenic, and that the PRL-2/CNNM3 association is important for conferring transforming activities. This finding is further confirmed from data in human breast cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index. In summary, we demonstrate that oncogenic PRL-2 controls tumor growth by modulating intracellular magnesium levels through binding with the CNNM3 magnesium transporter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Julien SG, Dube N, Hardy S, Tremblay ML . Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 2011; 11: 35–49.

    Article  CAS  Google Scholar 

  2. Rios P, Li X, Kohn M . Molecular mechanisms of the PRL phosphatases. FEBS J 2013; 280: 505–524.

    Article  CAS  Google Scholar 

  3. Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B et al. A phosphatase associated with metastasis of colorectal cancer. Science 2001; 294: 1343–1346.

    Article  CAS  Google Scholar 

  4. Hardy S, Julien SG, Tremblay ML . Impact of oncogenic protein tyrosine phosphatases in cancer. Anticancer Agents Med Chem 2012; 12: 4–18.

    Article  CAS  Google Scholar 

  5. Zeng Q, Si X, Horstmann H, Xu Y, Hong W, Pallen CJ . Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. J Biol Chem 2000; 275: 21444–21452.

    Article  CAS  Google Scholar 

  6. Peng L, Xing X, Li W, Qu L, Meng L, Lian S et al. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer 2009; 8: 110.

    Article  Google Scholar 

  7. Fiordalisi JJ, Keller PJ, Cox AD . PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res 2006; 66: 3153–3161.

    Article  CAS  Google Scholar 

  8. Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q . PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res 2007; 67: 2922–2926.

    Article  CAS  Google Scholar 

  9. Stephens B, Han H, Hostetter G, Demeure MJ, Von Hoff DD . Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells. Mol Cancer Ther 2008; 7: 202–210.

    Article  CAS  Google Scholar 

  10. Wang JY, Yeh CL, Chou HC, Yang CH, Fu YN, Chen YT et al. Vaccinia H1-related phosphatase is a phosphatase of ErbB receptors and is down-regulated in non-small cell lung cancer. J Biol Chem 2011; 286: 10177–10184.

    Article  CAS  Google Scholar 

  11. Krndija D, Munzberg C, Maass U, Hafner M, Adler G, Kestler HA et al. The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin alpha5 recycling. J Cell Sci 2012; 125: 3883–3892.

    Article  CAS  Google Scholar 

  12. Zeng Q, Hong W, Tan YH . Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun 1998; 244: 421–427.

    Article  CAS  Google Scholar 

  13. Dumaual CM, Sandusky GE, Crowell PL, Randall SK . Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. J Histochem Cytochem 2006; 54: 1401–1412.

    Article  CAS  Google Scholar 

  14. Dong Y, Zhang L, Zhang S, Bai Y, Chen H, Sun X et al. Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt protein. J Biol Chem 2012; 287: 32172–32179.

    Article  CAS  Google Scholar 

  15. Hardy S, Wong NN, Muller WJ, Park M, Tremblay ML . Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression. Cancer Res 2010; 70: 8959–8967.

    Article  CAS  Google Scholar 

  16. Wang Y, Lazo JS . Metastasis-associated phosphatase PRL-2 regulates tumor cell migration and invasion. Oncogene 2012; 31: 818–827.

    Article  CAS  Google Scholar 

  17. Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I . Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J Biol Chem 2004; 279: 11882–11889.

    Article  CAS  Google Scholar 

  18. Chen GI, Gingras AC . Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods 2007; 42: 298–305.

    Article  CAS  Google Scholar 

  19. Quamme GA . Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 2010; 298: C407–C429.

    Article  CAS  Google Scholar 

  20. Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, van Rooij FJ et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet 2010; 6: 1–11.

    Article  Google Scholar 

  21. Stuiver M, Lainez S, Will C, Terryn S, Gunzel D, Debaix H et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet 2011; 88: 333–343.

    Article  CAS  Google Scholar 

  22. Blanchetot C, Chagnon M, Dube N, Halle M, Tremblay ML . Substrate-trapping techniques in the identification of cellular PTP targets. Methods 2005; 35: 44–53.

    Article  CAS  Google Scholar 

  23. Sun JP, Wang WQ, Yang H, Liu S, Liang F, Fedorov AA et al. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry 2005; 44: 12009–12021.

    Article  CAS  Google Scholar 

  24. Skinner AL, Vartia AA, Williams TD, Laurence JS . Enzyme activity of phosphatase of regenerating liver is controlled by the redox environment and its C-terminal residues. Biochemistry 2009; 48: 4262–4272.

    Article  CAS  Google Scholar 

  25. Al-Aidaroos AQ, Zeng Q . PRL-3 phosphatase and cancer metastasis. J Cell Biochem 2010; 111: 1087–1098.

    Article  CAS  Google Scholar 

  26. Wang CY, Shi JD, Yang P, Kumar PG, Li QZ, Run QG et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 2003; 306: 37–44.

    Article  CAS  Google Scholar 

  27. Bateman A . The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 1997; 22: 12–13.

    Article  CAS  Google Scholar 

  28. de Baaij JH, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012; 287: 13644–13655.

    Article  CAS  Google Scholar 

  29. Bennetts B, Rychkov GY, Ng HL, Morton CJ, Stapleton D, Parker MW et al. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels. J Biol Chem 2005; 280: 32452–32458.

    Article  CAS  Google Scholar 

  30. Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O . Crystal structure of the MgtE Mg2+ transporter. Nature 2007; 448: 1072–1075.

    Article  CAS  Google Scholar 

  31. Gomez-Garcia I, Stuiver M, Ereno J, Oyenarte I, Corral-Rodriguez MA, Muller D et al. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68: 1198–1203.

    Article  CAS  Google Scholar 

  32. Dai LJ, Raymond L, Friedman PA, Quamme GA . Mechanisms of amiloride stimulation of Mg2+ uptake in immortalized mouse distal convoluted tubule cells. Am J Physiol 1997; 272: F249–F256.

    CAS  PubMed  Google Scholar 

  33. Dai LJ, Quamme GA . Intracellular Mg2+ and magnesium depletion in isolated renal thick ascending limb cells. J Clin Invest 1991; 88: 1255–1264.

    Article  CAS  Google Scholar 

  34. Wolf FI, Trapani V . Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci 2012; 123: 417–427.

    Article  CAS  Google Scholar 

  35. Feske S, Skolnik EY, Prakriya M . Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 2012; 12: 532–547.

    Article  CAS  Google Scholar 

  36. Wolf FI, Fasanella S, Tedesco B, Torsello A, Sgambato A, Faraglia B et al. Regulation of magnesium content during proliferation of mammary epithelial cells (HC-11). Front Biosci 2004; 9: 2056–2062.

    Article  CAS  Google Scholar 

  37. Castiglioni S, Maier JA . Magnesium and cancer: a dangerous liason. Magnes Res 2011; 24: S92–100.

    CAS  PubMed  Google Scholar 

  38. Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 2011; 475: 471–476.

    Article  CAS  Google Scholar 

  39. Ikari A, Atomi K, Kinjo K, Sasaki Y, Sugatani J . Magnesium deprivation inhibits a MEK-ERK cascade and cell proliferation in renal epithelial Madin-Darby canine kidney cells. Life Sci 2010; 86: 766–773.

    Article  CAS  Google Scholar 

  40. Chen SD, Chen YB, Peng Y, Xu J, Chen SS, Zhang JL et al. Role of PI3K/Akt signaling in the protective effect of magnesium sulfate against ischemia-perfusion injury of small intestine in rats. Chin Med J 2010; 123: 1447–1452.

    CAS  PubMed  Google Scholar 

  41. Tonks NK . Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006; 7: 833–846.

    Article  CAS  Google Scholar 

  42. Touyz RM . Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 2008; 294: H1103–H1118.

    Article  Google Scholar 

  43. Kolisek M, Nestler A, Vormann J, Schweigel-Rontgen M . Human gene SLC41A1 encodes for the Na+/Mg(2)+ exchanger. Am J Physiol Cell Physiol 2012; 302: C318–C326.

    Article  CAS  Google Scholar 

  44. Grynkiewicz G, Poenie M, Tsien RY . A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440–3450.

    CAS  PubMed  Google Scholar 

  45. Svotelis A, Bianco S, Madore J, Huppe G, Nordell-Markovits A, Mes-Masson AM et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERalpha ligand dependency. EMBO J 2011; 30: 3947–3961.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Laurent Lessard (J. Wayne Cancer Institute) for his technical help. Dr Kalle Gehring, biochemistry department, McGill University for helpful discussion and colleagues at the Goodman Cancer Research Centre Drs Jose Teodoro and Jerry Pelletier for their constructive comments on the manuscript. MLT is a Jeanne and Jean-Louis Lévesque chair in Cancer Research. DPL is a recipient of Canadian Institute of Health Research (CIHR) Frederick Banting and Charles Best Doctoral Research award and of CIHR/Fonds de recherche du Quebec–Sante Training Grant in Cancer Research FRN53888 the McGill Integrated Cancer Research Training Program. This research is supported by an operating grant from the Quebec Breast Cancer Foundation and the Canadian Breast Cancer Research Alliance to MLT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Tremblay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, S., Uetani, N., Wong, N. et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 34, 986–995 (2015). https://doi.org/10.1038/onc.2014.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.33

This article is cited by

Search

Quick links