Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Non-conventional functions for NF-κB members: the dark side of NF-κB

Abstract

NF-κB pathway exerts an essential function in the regulation of the immune response, which has been the nucleus of numerous studies for the past 25 years. Both activation of the pathway and termination of the NF-κB response are tightly regulated events, which is essential to prevent exacerbated inflammatory responses. Thus, alterations in NF-κB regulatory elements might result in tissue damage and cancer in different systems. In addition, several of the proteins involved in NF-κB regulation display additional, and much less studied, functions that connect with specific NF-κB-unrelated pathways. Many of these pathways are in turn regulators of particular physiologic and/or pathologic responses. Which are the principal non-conventional functions that have been identified for specific NF-κB elements, how they connect with other signaling pathways and what is their potential impact on cancer is the focus of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sen R, Baltimore D . Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46: 705–716.

    CAS  Google Scholar 

  2. Pahl HL . Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853–6866.

    CAS  Google Scholar 

  3. Hayden MS, Ghosh S . Signaling to NF-kappaB. Genes Dev 2004; 18: 2195–2224.

    CAS  Google Scholar 

  4. Kucharczak J, Simmons MJ, Fan Y, Gélinas C . To be, or not to be: NF-kappaB is the answer—role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2003; 22: 8961–8982.

    CAS  Google Scholar 

  5. Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R . Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 1999; 18: 6888–6895.

    CAS  Google Scholar 

  6. Staudt LM, Singh H, Sen R, Wirth T, Sharp PA, Baltimore D . A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 1986; 323: 640–643.

    CAS  Google Scholar 

  7. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D . Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376: 167–170.

    CAS  Google Scholar 

  8. Brown K, Park S, Kanno T, Franzoso G, Siebenlist U . Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci USA 1993; 90: 2532–2536.

    CAS  Google Scholar 

  9. Sun SC, Ganchi PA, Ballard DW, Greene WC . NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 1993; 259: 1912–1915.

    CAS  Google Scholar 

  10. Arenzana-Seisdedos F, Turpin P, Rodriguez M, Thomas D, Hay RT, Virelizier JL et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci 1997; 110 (Part 3): 369–378.

    CAS  Google Scholar 

  11. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M . A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548–554.

    CAS  Google Scholar 

  12. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 1997; 278: 860–866.

    CAS  Google Scholar 

  13. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M . The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997; 91: 243–252.

    CAS  Google Scholar 

  14. Rothwarf DM, Zandi E, Natoli G, Karin M . IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 1998; 395: 297–300.

    CAS  Google Scholar 

  15. Chen ZJ, Parent L, Maniatis T . Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 1996; 84: 853–862.

    CAS  Google Scholar 

  16. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009; 36: 831–844.

    CAS  Google Scholar 

  17. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11: 123–132.

    CAS  Google Scholar 

  18. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011; 471: 591–596.

    CAS  Google Scholar 

  19. Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 2011; 471: 637–641.

    CAS  Google Scholar 

  20. Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 2011; 471: 633–636.

    CAS  Google Scholar 

  21. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G . The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–805.

    CAS  Google Scholar 

  22. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–796.

    CAS  Google Scholar 

  23. Brummelkamp TR, Nijman SMB, Dirac AMG, Bernards R . Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801.

    CAS  Google Scholar 

  24. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694–699.

    CAS  Google Scholar 

  25. Boone DL, Turer EE, Lee EG, Ahmad R-C, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060.

    CAS  Google Scholar 

  26. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    CAS  Google Scholar 

  27. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17: 525–535.

    CAS  Google Scholar 

  28. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002; 17: 515–524.

    CAS  Google Scholar 

  29. Claudio E, Brown K, Park S, Wang H, Siebenlist U . BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 2002; 3: 958–965.

    CAS  Google Scholar 

  30. Coope HJ, Atkinson PGP, Huhse B, Belich M, Janzen J, Holman MJ et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002; 21: 5375–5385.

    CAS  Google Scholar 

  31. Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel D V, Ross FP et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003; 198: 771–781.

    CAS  Google Scholar 

  32. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng P-H, Keats JJ, Wang H et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008; 9: 1364–1370.

    CAS  Google Scholar 

  33. Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 2001; 293: 1495–1499.

    CAS  Google Scholar 

  34. Xiao G, Harhaj EW, Sun SC . NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001; 7: 401–409.

    CAS  Google Scholar 

  35. Amir RE, Haecker H, Karin M, Ciechanover A . Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene 2004; 23: 2540–2547.

    CAS  Google Scholar 

  36. Betts JC, Nabel GJ . Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996; 16: 6363–6371.

    CAS  Google Scholar 

  37. Solan NJ, Miyoshi H, Carmona EM, Bren GD, Paya CV . RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2002; 277: 1405–1418.

    CAS  Google Scholar 

  38. Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284: 316–320.

    CAS  Google Scholar 

  39. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T et al. Limb and skin abnormalities in mice lacking IKKalpha. Science 1999; 284: 313–316.

    CAS  Google Scholar 

  40. Bonizzi G, Karin M . The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288.

    CAS  Google Scholar 

  41. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS . A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003; 423: 659–663.

    CAS  Google Scholar 

  42. Yamamoto Y, Verma UN, Prajapati S, Kwak Y-T, Gaynor RB . Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 2003; 423: 655–659.

    CAS  Google Scholar 

  43. Park GY, Wang X, Hu N, Pedchenko T V, Blackwell TS, Christman JW . NIK is involved in nucleosomal regulation by enhancing histone H3 phosphorylation by IKKalpha. J Biol Chem 2006; 281: 18684–18690.

    CAS  Google Scholar 

  44. Temmerman ST, Ma CA, Zhao Y, Keenan J, Aksentijevich I, Fessler M et al. Defective nuclear IKKα function in patients with ectodermal dysplasia with immune deficiency. J Clin Invest 2012; 122: 315–326.

    CAS  Google Scholar 

  45. Anest V, Cogswell PC, Baldwin AS . IkappaB kinase alpha and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IkappaBalpha degradation. J Biol Chem 2004; 279: 31183–31189.

    CAS  Google Scholar 

  46. Park K-J, Krishnan V, O’Malley BW, Yamamoto Y, Gaynor RB . Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 2005; 18: 71–82.

    CAS  Google Scholar 

  47. Li L, Ruan Q, Hilliard B, Devirgiliis J, Karin M, Chen YH . Transcriptional regulation of the Th17 immune response by IKK(alpha). J Exp Med 2011; 208: 787–796.

    CAS  Google Scholar 

  48. Hoberg JE, Yeung F, Mayo MW . SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 2004; 16: 245–255.

    CAS  Google Scholar 

  49. Fernández-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytés A et al. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA 2007; 104: 276–281.

    Google Scholar 

  50. Fernández-Majada V, Pujadas J, Vilardell F, Capella G, Mayo MW, Bigas A et al. Aberrant cytoplasmic localization of N-CoR in colorectal tumors. Cell Cycle 2007; 6: 1748–1752.

    Google Scholar 

  51. Tu Z, Prajapati S, Park K-J, Kelly NJ, Yamamoto Y, Gaynor RB . IKK alpha regulates estrogen-induced cell cycle progression by modulating E2F1 expression. J Biol Chem 2006; 281: 6699–6706.

    CAS  Google Scholar 

  52. Prajapati S, Tu Z, Yamamoto Y, Gaynor RB . IKKalpha regulates the mitotic phase of the cell cycle by modulating Aurora A phosphorylation. Cell Cycle 2006; 5: 2371–2380.

    CAS  Google Scholar 

  53. Barré B, Perkins ND . A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 2007; 26: 4841–4855.

    Google Scholar 

  54. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I et al. The IKK complex contributes to the induction of autophagy. EMBO J 2010; 29: 619–631.

    CAS  Google Scholar 

  55. Comb WC, Cogswell P, Sitcheran R, Baldwin AS . IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene 2011; 30: 1727–1732.

    CAS  Google Scholar 

  56. Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ . Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med 2013; 19: 722–729.

    CAS  Google Scholar 

  57. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    CAS  Google Scholar 

  58. Luo J-L, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL et al. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 2007; 446: 690–694.

    CAS  Google Scholar 

  59. Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M . B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010; 464: 302–305.

    CAS  Google Scholar 

  60. Zhang W, Tan W, Wu X, Poustovoitov M, Strasner A, Li W et al. A NIK-IKKα module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 2013; 23: 647–659.

    CAS  Google Scholar 

  61. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13: 70–77.

    CAS  Google Scholar 

  62. Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J et al. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 2010; 18: 268–281.

    CAS  Google Scholar 

  63. Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 2008; 27: 5833–5844.

    CAS  Google Scholar 

  64. Hao L, Rizzo P, Osipo C, Pannuti A, Wyatt D, Cheung LW-K et al. Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene 2010; 29: 201–213.

    CAS  Google Scholar 

  65. Margalef P, Fernández-Majada V, Villanueva A, Garcia-Carbonell R, Iglesias M, López L et al. A truncated form of IKKα is responsible for specific nuclear IKK activity in colorectal cancer. Cell Rep 2012; 2: 840–854.

    CAS  Google Scholar 

  66. Schröfelbauer B, Polley S, Behar M, Ghosh G, Hoffmann A . NEMO ensures signaling specificity of the pleiotropic IKKβ by directing its kinase activity toward IκBα. Mol Cell 2012; 47: 111–121.

    Google Scholar 

  67. Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol 2010; 12: 758–767.

    CAS  Google Scholar 

  68. Tsuchiya Y, Asano T, Nakayama K, Kato T, Karin M, Kamata H . Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation. Mol Cell 2010; 39: 570–582.

    CAS  Google Scholar 

  69. Sakamoto K, Hikiba Y, Nakagawa H, Hirata Y, Hayakawa Y, Kinoshita H et al. Promotion of DNA repair by nuclear IKKβ phosphorylation of ATM in response to genotoxic stimuli. Oncogene 2013; 32: 1854–1862.

    CAS  Google Scholar 

  70. Suzuki K, Verma IM . Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation. Cell 2008; 134: 485–495.

    CAS  Google Scholar 

  71. Hu MC-T, Lee D-F, Xia W, Golfman LS, Ou-Yang F, Yang J-Y et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117: 225–237.

    CAS  Google Scholar 

  72. Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A . Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 2004; 101: 16537–16542.

    CAS  Google Scholar 

  73. Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A et al. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell 2013; 24: 1–16.

    Google Scholar 

  74. Rao P, Hayden MS, Long M, Scott ML, West AP, Zhang D et al. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 2010; 466: 1115–1119.

    CAS  Google Scholar 

  75. Liu L, D’Mello SR . Phosphorylation of IkappaB-beta is necessary for neuronal survival. J Biol Chem 2006; 281: 1506–1515.

    CAS  Google Scholar 

  76. Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M . IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 2001; 410: 710–714.

    CAS  Google Scholar 

  77. Marinari B, Moretti F, Botti E, Giustizieri ML, Descargues P, Giunta A et al. The tumor suppressor activity of IKKalpha in stratified epithelia is exerted in part via the TGF-beta antiproliferative pathway. Proc Natl Acad Sci USA 2008; 105: 17091–17096.

    CAS  Google Scholar 

  78. Zhu F, Xia X, Liu B, Shen J, Hu Y, Person M et al. IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol Cell 2007; 27: 214–227.

    CAS  Google Scholar 

  79. Seitz CS, Freiberg RA, Hinata K, Khavari PA . NF-kappaB determines localization and features of cell death in epidermis. J Clin Invest 2000; 105: 253–260.

    CAS  Google Scholar 

  80. Seitz CS, Lin Q, Deng H, Khavari PA . Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc Natl Acad Sci USA 1998; 95: 2307–2312.

    CAS  Google Scholar 

  81. Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA . Nuclear factor kappaB subunits induce epithelial cell growth arrest. Cancer Res 2000; 60: 4085–4092.

    CAS  Google Scholar 

  82. Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P et al. IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci USA 2008; 105: 2487–2492.

    CAS  Google Scholar 

  83. Sil AK, Maeda S, Sano Y, Roop DR, Karin M . IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 2004; 428: 660–664.

    CAS  Google Scholar 

  84. Liu B, Park E, Zhu F, Bustos T, Liu J, Shen J et al. A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc Natl Acad Sci USA 2006; 103: 17202–17207.

    CAS  Google Scholar 

  85. Park E, Zhu F, Liu B, Xia X, Shen J, Bustos T et al. Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer Res 2007; 67: 9158–9168.

    CAS  Google Scholar 

  86. Beg AA, Sha WC, Bronson RT, Baltimore D . Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 1995; 9: 2736–2746.

    CAS  Google Scholar 

  87. Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH et al. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 1996; 16: 2341–2349.

    CAS  Google Scholar 

  88. Rebholz B, Haase I, Eckelt B, Paxian S, Flaig MJ, Ghoreschi K et al. Crosstalk between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated inflammatory disease of the skin. Immunity 2007; 27: 296–307.

    CAS  Google Scholar 

  89. Wuerzberger-Davis SM, Chen Y, Yang DT, Kearns JD, Bates PW, Lynch C et al. Nuclear export of the NF-κB inhibitor IκBα is required for proper B cell and secondary lymphoid tissue formation. Immunity 2011; 34: 188–200.

    CAS  Google Scholar 

  90. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–643.

    CAS  Google Scholar 

  91. Van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgård R . Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 1999; 59: 3299–3303.

    CAS  Google Scholar 

  92. Shih VF-S, Kearns JD, Basak S, Savinova O V, Ghosh G, Hoffmann A . Kinetic control of negative feedback regulators of NF-kappaB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc Natl Acad Sci USA 2009; 106: 9619–9624.

    CAS  Google Scholar 

  93. Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 2010; 17: 481–496.

    CAS  Google Scholar 

  94. O’Donnell MA, Hase H, Legarda D, Ting AT . NEMO inhibits programmed necrosis in an NFκB-independent manner by restraining RIP1. PLoS ONE 2012; 7: e41238.

    Google Scholar 

  95. Li M, Beg AA . Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J Virol 2000; 74: 7470–7477.

    CAS  Google Scholar 

  96. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998; 187: 1477–1485.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory for helpful discussions. This work has been supported by AGAUR (SGR23), ISCIII (PI13/00448) and RTICC (RD12/0036/0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Espinosa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, L., Margalef, P. & Bigas, A. Non-conventional functions for NF-κB members: the dark side of NF-κB. Oncogene 34, 2279–2287 (2015). https://doi.org/10.1038/onc.2014.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.188

This article is cited by

Search

Quick links