Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis

Abstract

Talins are adaptor proteins that regulate focal adhesion signaling by conjugating integrins to the cytoskeleton. Talins directly bind integrins and are essential for integrin activation. We previously showed that β1 integrins are activated in metastatic prostate cancer (PCa) cells, increasing PCa metastasis to lymph nodes and bone. However, how β1 integrins are activated in PCa cells is unknown. In this study, we identified a novel mechanism of β1 integrin activation. Using knockdown experiments, we first demonstrated that talin1, but not talin2, is important in β1 integrin activation. We next showed that talin1 S425 phosphorylation, but not total talin1 expression, correlates with metastatic potential of PCa cells. Expressing a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 and C4-2B4 PCa cells, decreased activation of β1 integrins, integrin-mediated adhesion, motility and increased the sensitivity of the cells to anoikis. In contrast, reexpression of the phosphorylation-mimicking mutant talin1S425D led to increased β1 integrin activation and generated biologic effects opposite to talin1S425A expression. In the highly metastatic PC3-MM2 cells, expression of a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 cells, abolished their ability to colonize in the bone following intracardiac injection, while reexpression of phosphorylation-mimicking mutant talin1S425D restored their ability to metastasize to bone. Immunohistochemical staining demonstrated that talin S425 phosphorylation is significantly increased in human bone metastases when compared with normal tissues, primary tumors or lymph node metastases. We further showed that p35 expression, an activator of Cdk5, and Cdk5 activity were increased in metastatic tumor cells, and that Cdk5 kinase activity is responsible for talin1 phosphorylation and subsequent β1 integrin activation. Together, our study reveals Cdk5-mediated phosphorylation of talin1 leading to β1 integrin activation is a novel mechanism that increases metastatic potential of PCa cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49: 1374–1403.

    Article  CAS  PubMed  Google Scholar 

  2. American Cancer Society Cancer Facts & Figures, American Cancer Society: Atlanta, GA, USA, 2013.

  3. Jin JK, Dayyani F, Gallick GE . Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer 2011; 128: 2545–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakamoto S, McCann RO, Dhir R, Kyprianou N . Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res 2010; 70: 1885–1895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai MT, Hua CH, Tsai MH, Wan L, Lin YJ, Chen CM et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. J Pathol 2011; 224: 367–376.

    Article  CAS  PubMed  Google Scholar 

  6. Tang H, Yao L, Tao X, Yu Y, Chen M, Zhang R et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med 2013; 32: 381–388.

    Article  CAS  PubMed  Google Scholar 

  7. Monkley SJ, Pritchard CA, Critchley DR . Analysis of the mammalian talin2 gene TLN2. Biochem Biophys Res Commun 2001; 286: 880–885.

    Article  CAS  PubMed  Google Scholar 

  8. Debrand E, El Jai Y, Spence L, Bate N, Praekelt U, Pritchard CA et al. Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms. FEBS J 2009; 276: 1610–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manso AM, Li R, Monkley SJ, Cruz NM, Ong S, Lao DH et al. Talin1 has unique expression versus talin2 in the heart and modifies the hypertrophic response to pressure overload. J Biol Chem 2013; 288: 4252–4264.

    Article  CAS  PubMed  Google Scholar 

  10. Desiniotis A, Kyprianou N . Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol 2011; 289: 117–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goult BT, Xu XP, Gingras AR, Swift M, Patel B, Bate N et al. Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation. J Struct Biol 2013; 184: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calderwood DA, Campbell ID, Critchley DR . Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14: 503–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH . The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274: 28071–28074.

    Article  CAS  PubMed  Google Scholar 

  14. Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302: 103–106.

    Article  CAS  PubMed  Google Scholar 

  15. Critchley DR, Gingras AR . Talin at a glance. J Cell Sci 2008; 121: 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  16. Ratnikov B, Ptak C, Han J, Shabanowitz J, Hunt DF, Ginsberg MH . Talin phosphorylation sites mapped by mass spectrometry. J Cell Sci 2005; 118: 4921–4923.

    Article  CAS  PubMed  Google Scholar 

  17. Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH . Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol 2009; 11: 624–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M et al. Targeting constitutively activated beta1 integrins inhibits prostate cancer metastasis. Mol Cancer Res 2013; 11: 405–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E . p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994; 371: 419–423.

    Article  CAS  PubMed  Google Scholar 

  20. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T et al. A brain-specific activator of cyclin-dependent kinase 5. Nature 1994; 371: 423–426.

    Article  CAS  PubMed  Google Scholar 

  21. Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, Ball DW et al. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 2006; 66: 7509–7515.

    Article  CAS  PubMed  Google Scholar 

  22. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010; 18: 181–187.

    Article  CAS  PubMed  Google Scholar 

  23. Ye F, Kim C, Ginsberg MH . Molecular mechanism of inside-out integrin regulation. J Thromb Haemost 2011; 9: 20–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martel V, Racaud-Sultan C, Dupe S, Marie C, Paulhe F, Galmiche A et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J Biol Chem 2001; 276: 21217–21227.

    Article  CAS  PubMed  Google Scholar 

  25. Song X, Yang J, Hirbawi J, Ye S, Perera HD, Goksoy E et al. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion. Cell Res 2012; 22: 1533–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan B, Calderwood DA, Yaspan B, Ginsberg MH . Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J Biol Chem 2001; 276: 28164–28170.

    Article  CAS  PubMed  Google Scholar 

  27. Ye F, Petrich BG, Anekal P, Lefort CT, Kasirer-Friede A, Shattil SJ et al. The mechanism of kindlin-mediated activation of integrin alphaIIbbeta3. Curr Biol 2013; 23: 2288–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das M, Ithychanda S, Qin J, Plow EF . Mechanisms of talin-dependent integrin signaling and crosstalk. Biochim Biophys Acta 2014; 1838: 579–588.

    Article  CAS  PubMed  Google Scholar 

  29. Barthel SR, Hays D, Yazawa EM, Opperman MJ, Walley KC, Nimrichter L et al. Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 2013; 73: 942–952.

    Article  CAS  PubMed  Google Scholar 

  30. Edlund M, Miyamoto T, Sikes RA, Ogle R, Laurie GW, Farach-Carson MC et al. Integrin expression and usage by prostate cancer cell lines on laminin substrata. Cell Growth Differ 2001; 12: 99–107.

    CAS  PubMed  Google Scholar 

  31. Stachurska A, Elbanowski J, Kowalczynska HM . Role of alpha5beta1 and alphavbeta3 integrins in relation to adhesion and spreading dynamics of prostate cancer cells interacting with fibronectin under in vitro conditions. Cell Biol Int 2012; 36: 883–892.

    Article  CAS  PubMed  Google Scholar 

  32. Van der VeD Verdaasdonk MA, Rademakers LH, De Weger RA, Van den TwJ, Joling P . Fibronectin distribution in human bone marrow stroma: matrix assembly and tumor cell adhesion via alpha5beta1 integrin. Exp Cell Res 1997; 230: 111–120.

    Article  Google Scholar 

  33. Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET et al. Integrin alpha2beta1 (alpha2beta1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 2013; 30: 569–578.

    Article  CAS  PubMed  Google Scholar 

  34. Hall CL, Dai J, van Golen KL, Keller ET, Long MW . Type I collagen receptor (alpha2beta1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res 2006; 66: 8648–8654.

    Article  CAS  PubMed  Google Scholar 

  35. Lang SH, Clarke NW, George NJ, Testa NG . Primary prostatic epithelial cell binding to human bone marrow stroma and the role of alpha2beta1 integrin. Clin Exp Metastasis 1997; 15: 218–227.

    Article  CAS  PubMed  Google Scholar 

  36. Lin TH, Liu HH, Tsai TH, Chen CC, Hsieh TF, Lee SS et al. CCL2 increases alphavbeta3 integrin expression and subsequently promotes prostate cancer migration. Biochim Biophys Acta 2013; 1830: 4917–4927.

    Article  CAS  PubMed  Google Scholar 

  37. Trerotola M, Jernigan DL, Liu Q, Siddiqui J, Fatatis A, Languino LR . Trop-2 promotes prostate cancer metastasis by modulating beta1 integrin functions. Cancer Res 2013; 73: 3155–3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR . Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res 1999; 59: 1655–1664.

    CAS  PubMed  Google Scholar 

  39. Sayeed A, Fedele C, Trerotola M, Ganguly KK, Languino LR . IGF-IR promotes prostate cancer growth by stabilizing alpha5beta1 integrin protein levels. PLoS ONE 2013; 8: e76513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cress AE, Rabinovitz I, Zhu W, Nagle RB . The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev 1995; 14: 219–228.

    Article  CAS  PubMed  Google Scholar 

  41. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996; 2: 1627–1636.

    CAS  PubMed  Google Scholar 

  42. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 2577–2581.

    CAS  PubMed  Google Scholar 

  43. Chang SK, Noss EH, Chen M, Gu Z, Townsend K, Grenha R et al. Cadherin-11 regulates fibroblast inflammation. Proc Natl Acad Sci U S A 2011; 108: 8402–8407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varkaris A, Gaur S, Parikh NU, Song JH, Dayyani F, Jin JK et al. Ligand-independent activation of MET through IGF-1/IGF-1R signaling. Int J Cancer 2013; 133: 1536–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 2009; 4: e6529.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Joseph H McCarty for critically reviewing the manuscript. This work was supported by the National Institutes of Health (NIH) P50 CA140388 (GEG, S-HL), a Prostate Cancer Foundation Challenge Award (GEG, S-HL), NIH RO-1 CA174798 (S-HL), DOD PC093132 (S-HL), a Cancer Prevention and Research Institute of Texas, CPRIT RP110327 (S-HL) and NIH CA16672 (CCSG, M. D. Anderson Cancer Center core grant).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S-H Lin or G E Gallick.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, JK., Tien, PC., Cheng, CJ. et al. Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 34, 1811–1821 (2015). https://doi.org/10.1038/onc.2014.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.116

This article is cited by

Search

Quick links