Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interaction between PARP-1 and HIF-2α in the hypoxic response

Abstract

Hypoxia-inducible factors (HIFs) mediate the transcriptional adaptation of hypoxic cells. The extensive transcriptional programm regulated by HIFs involves the induction of genes controlling angiogenesis, cellular metabolism, cell growth, metastasis, apoptosis, extracellular matrix remodeling and others. HIF is a heterodimer of HIF-α and HIF-β subunits. In addition to HIF-1α, HIF-2α has evolved as an isoform that contributes differently to the hypoxic adaptation by performing non-redundant functions. Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein involved in the control of DNA repair and gene transcription by modulating chromatin structure and acting as part of gene-specific enhancer/promoter-binding complexes. Previous results have shown that PARP-1 regulates HIF-1 activity. In this study, we focused on the cross-talk between HIF-2α and PARP-1. By using different approaches to suppress PARP-1, we show that HIF-2α mRNA expression, protein levels and HIF-2-dependent gene expression, such as ANGPTL4 and erythropoietin (EPO), are regulated by PARP-1. This regulation occurs at both the transcriptional and post-trancriptional level. We also show a complex formation between HIF-2α with PARP-1. This complex is sensitive to PARP inhibition and seems to protect against the von Hippel–Lindau-dependent HIF-2α degradation. Finally, we show that parp-1−/− mice display a significant reduction in the circulating hypoxia-induced EPO levels, number of red cells and hemoglobin concentration. Altogether, these results reveal a complex functional interaction between PARP-1 and the HIF system and suggest that PARP-1 is involved in the fine tuning of the HIF-mediated hypoxic response in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Semenza GL . Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.

    Article  CAS  Google Scholar 

  2. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394: 485–490.

    Article  CAS  Google Scholar 

  3. Hochachka PW, Buck LT, Doll CJ, Land SC . Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 1996; 93: 9493–9498.

    Article  CAS  Google Scholar 

  4. Benizri E, Ginouves A, Berra E . The magic of the hypoxia-signaling cascade. Cell Mol Life Sci 2008; 65: 1133–1149.

    Article  CAS  Google Scholar 

  5. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  Google Scholar 

  6. Pugh CW, Tan CC, Jones RW, Ratcliffe PJ . Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 1991; 88: 10553–10557.

    Article  CAS  Google Scholar 

  7. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  Google Scholar 

  8. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  Google Scholar 

  9. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.

    Article  CAS  Google Scholar 

  10. Bruick RK, McKnight SL . A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–1340.

    Article  CAS  Google Scholar 

  11. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.

    Article  CAS  Google Scholar 

  12. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK . FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002; 16: 1466–1471.

    Article  CAS  Google Scholar 

  13. Tian H, McKnight SL, Russell DW . Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72–82.

    Article  CAS  Google Scholar 

  14. Ryan HE, Lo J, Johnson RS . HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998; 17: 3005–3015.

    Article  CAS  Google Scholar 

  15. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998; 12: 149–162.

    Article  CAS  Google Scholar 

  16. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL . The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 1998; 12: 3320–3324.

    Article  CAS  Google Scholar 

  17. Peng J, Zhang L, Drysdale L, Fong GH . The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 2000; 97: 8386–8391.

    Article  CAS  Google Scholar 

  18. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 2006; 20: 557–570.

    Article  CAS  Google Scholar 

  19. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR . High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 2011; 117: e207–e217.

    Article  CAS  Google Scholar 

  20. Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007; 117: 1068–1077.

    Article  CAS  Google Scholar 

  21. Aprelikova O, Wood M, Tackett S, Chandramouli GV, Barrett JC . Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res 2006; 66: 5641–5647.

    Article  CAS  Google Scholar 

  22. Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 2004; 23: 1949–1956.

    Article  CAS  Google Scholar 

  23. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC . HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11: 335–347.

    Article  CAS  Google Scholar 

  24. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C . HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest 2009; 119: 1159–1166.

    Article  CAS  Google Scholar 

  25. Loboda A, Jozkowicz A, Dulak J . HIF-1 versus HIF-2—is one more important than the other? Vascul Pharmacol 2012; 56: 245–251.

    Article  CAS  Google Scholar 

  26. Schreiber V, Dantzer F, Ame JC, de Murcia G . Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006; 7: 517–528.

    Article  CAS  Google Scholar 

  27. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta-Leal A, Quiles-Perez R, Rodriguez-Vargas JM et al. Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 2007; 14: 1179–1187.

    Article  CAS  Google Scholar 

  28. Kraus WL, Lis JT . PARP goes transcription. Cell 2003; 113: 677–683.

    Article  CAS  Google Scholar 

  29. Martinez-Romero R, Canuelo A, Siles E, Oliver FJ, Martinez-Lara E . Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross-talk in response to hypobaric hypoxia. J Appl Physiol 2012; 112: 816–823.

    Article  CAS  Google Scholar 

  30. Elser M, Borsig L, Hassa PO, Erener S, Messner S, Valovka T et al. Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression. Mol Cancer Res 2008; 6: 282–290.

    Article  CAS  Google Scholar 

  31. Yoon D, Ponka P, Prchal JT . Hypoxia and hematopoiesis. Am J Physiol 2011; 300: C1215–C1222.

    Article  CAS  Google Scholar 

  32. Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13: 1721–1732.

    Article  CAS  Google Scholar 

  33. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD . The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1: 247–255.

    Article  CAS  Google Scholar 

  34. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–5686.

    Article  CAS  Google Scholar 

  35. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–246.

    Article  CAS  Google Scholar 

  36. Kondo K, Kim WY, Lechpammer M, Kaelin WG . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83.

    Article  Google Scholar 

  37. Flamme I, Krieg M, Plate KH . Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am J Pathol 1998; 153: 25–29.

    Article  CAS  Google Scholar 

  38. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006; 10: 413–423.

    Article  CAS  Google Scholar 

  39. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 1997; 94: 7303–7307.

    Article  CAS  Google Scholar 

  40. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003; 22: 4082–4090.

    Article  CAS  Google Scholar 

  41. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landazuri MO et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 2005; 390 (Pt 1): 189–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Françoise Dantzer, CNRS, Strasbourg (France), for providing the pEGFP-PARP-1 construct. This work was supported by Ministerio de Ciencia e Innovación (SAF2006-01094 and SAF2009-13281-C02-01), Fundación La Caixa (BM06-219-0) and Junta de Andalucía (P07-CTS-0239) to FJO; Ministerio de Educación y Ciencia (SAF2007-64597 and SAF-2010-20067) and the BIZKAIA XEDE Program from the Bizkaia County to EB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Berra or F J Oliver.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Flores, A., Aguilar-Quesada, R., Siles, E. et al. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene 33, 891–898 (2014). https://doi.org/10.1038/onc.2013.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.9

Keywords

This article is cited by

Search

Quick links