Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells

Abstract

As a multifaceted molecule, p21 plays multiple critical roles in cell cycle regulation, differentiation, apoptosis, DNA repair, senescence, aging and stem cell reprogramming. The important roles of p21 in the interphase of the cell cycle have been intensively investigated. The function of p21 in mitosis has been proposed but not systematically studied. We show here that p21 is abundant in mitosis and binds to and inhibits the activity of Cdk1/cyclin B1. Deficiency of p21 prolongs the duration of mitosis by extending metaphase, anaphase and cytokinesis. The activity of Aurora B is reduced and the localization of Aurora B on the central spindle is disturbed in anaphase cells without p21. Moreover, HCT116 p21−/−, HeLa and Saos-2 cells depleted of p21 encounter problems in chromosome segregation and cytokinesis. Gently inhibiting the mitotic Cdk1 or add-back of p21 rescues segregation defect in HCT116 p21−/− cells. Our data demonstrate that p21 is important for a fine-tuned control of the Cdk1 activity in mitosis, and its proper function facilitates a smooth mitotic progression. Given that p21 is downregulated in the majority of tumors, either by the loss of tumor suppressors like p53 or by hyperactive oncogenes such as c-myc, this finding also sheds new light on the molecular mechanisms by which p21 functions as a tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

Cdk1:

cyclin-dependent kinase 1

CPC:

chromosomal passenger complex

INCENP:

inner centromere protein

ACA:

anti-centromere antibody

MCAK:

mitotic centromere-associated kinesin

MKLP:

mitotic kinesin-like protein

PRC1:

protein regulator of cytokinesis 1.

References

  1. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  Google Scholar 

  2. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  CAS  Google Scholar 

  3. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    Article  CAS  Google Scholar 

  4. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR . Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211: 90–98.

    Article  CAS  Google Scholar 

  5. Bloom J, Pagano M . To be or not to be ubiquitinated? Cell Cycle 2004; 3: 138–140.

    Article  CAS  Google Scholar 

  6. Pei XH, Xiong Y . Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 2005; 24: 2787–2795.

    Article  CAS  Google Scholar 

  7. Gartel AL, Tyner AL . Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 1999; 246: 280–289.

    Article  CAS  Google Scholar 

  8. Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M . Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 2001; 61: 6234–6238.

    CAS  PubMed  Google Scholar 

  9. Brugarolas J, Bronson RT, Jacks T . p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J Cell Biol 1998; 141: 503–514.

    Article  CAS  Google Scholar 

  10. Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y . Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147–6158.

    Article  CAS  Google Scholar 

  11. Yang W, Velcich A, Mariadason J, Nicholas C, Corner G, Houston M et al. p21(WAF1/cip1) is an important determinant of intestinal cell response to sulindac in vitro and in vivo. Cancer Res 2001; 61: 6297–6302.

    CAS  Google Scholar 

  12. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM . Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19: 5338–5347.

    Article  CAS  Google Scholar 

  13. Roninson IB . Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002; 179: 1–14.

    Article  CAS  Google Scholar 

  14. Coqueret O . New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003; 13: 65–70.

    Article  CAS  Google Scholar 

  15. Besson A, Dowdy SF, Roberts JM . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

    Article  CAS  Google Scholar 

  16. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  Google Scholar 

  17. Gartel AL . p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors 2009; 35: 161–164.

    Article  CAS  Google Scholar 

  18. Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulic V . p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 2004; 15: 3965–3976.

    Article  CAS  Google Scholar 

  19. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E . Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 2010; 704: 12–20.

    Article  CAS  Google Scholar 

  20. Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH . p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 2000; 275: 30638–30643.

    Article  CAS  Google Scholar 

  21. Hall CC, Watkins JD, Ferguson SB, Foley LH, Georgopapadakou NH . Inhibitors of farnesyltransferase and Ras processing peptidase. Biochem Biophys Res Commun 1995; 217: 728–732.

    Article  CAS  Google Scholar 

  22. Medema RH, Klompmaker R, Smits VA, Rijksen G . p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 1998; 16: 431–441.

    Article  CAS  Google Scholar 

  23. Dulic V, Stein GH, Far DF, Reed SI . Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 1998; 18: 546–557.

    Article  CAS  Google Scholar 

  24. Dash BC, El-Deiry WS . Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol 2005; 25: 3364–3387.

    Article  CAS  Google Scholar 

  25. Niculescu AB III, Chen X, Smeets M, Hengst L, Prives C, Reed SI . Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18: 629–643.

    Article  CAS  Google Scholar 

  26. Bates S, Ryan KM, Phillips AC, Vousden KH . Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene 1998; 17: 1691–1703.

    Article  CAS  Google Scholar 

  27. Lanni JS, Jacks T . Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18: 1055–1064.

    Article  CAS  Google Scholar 

  28. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  Google Scholar 

  29. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  Google Scholar 

  30. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA 2006; 103: 10660–10665.

    Article  CAS  Google Scholar 

  31. Baus F, Gire V, Fisher D, Piette J, Dulic V . Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 2003; 22: 3992–4002.

    Article  CAS  Google Scholar 

  32. van der Waal MS, Hengeveld RC, van der Horst A, Lens SM . Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318: 1407–1420.

    Article  CAS  Google Scholar 

  33. Hummer S, Mayer TU . Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 2009; 19: 607–612.

    Article  Google Scholar 

  34. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ . Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286: 971–974.

    Article  CAS  Google Scholar 

  35. Mishima M, Kaitna S, Glotzer M . Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2002; 2: 41–54.

    Article  CAS  Google Scholar 

  36. Glotzer M . Animal cell cytokinesis. Annu Rev Cell Dev Biol 2001; 17: 351–386.

    Article  CAS  Google Scholar 

  37. Lindqvist A, van ZW, Karlsson RC, Wolthuis RM . Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol 2007; 5: e123.

    Article  Google Scholar 

  38. Wolf F, Wandke C, Isenberg N, Geley S . Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells. EMBO J 2006; 25: 2802–2813.

    Article  CAS  Google Scholar 

  39. Lindqvist A, Rodriguez-Bravo V, Medema RH . The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 2009; 185: 193–202.

    Article  CAS  Google Scholar 

  40. Yuan J, Eckerdt F, Bereiter-Hahn J, Kurunci-Csacsko E, Kaufmann M, Strebhardt K . Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Oncogene 2002; 21: 8282–8292.

    Article  CAS  Google Scholar 

  41. Amador V, Ge S, Santamaria PG, Guardavaccaro D, Pagano M . APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 2007; 27: 462–473.

    Article  CAS  Google Scholar 

  42. Wolf F, Sigl R, Geley S . '... The end of the beginning': cdk1 thresholds and exit from mitosis. Cell Cycle 2007; 6: 1408–1411.

    Article  CAS  Google Scholar 

  43. Pomerening JR, Ubersax JA, Ferrell JE Jr . Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF. Mol Biol Cell 2008; 19: 3426–3441.

    Article  CAS  Google Scholar 

  44. Trakala M, Fernandez-Miranda G, Perez dC I, Heeschen C, Malumbres M . Aurora B, prevents delayed DNA replication and premature mitotic exit by repressing p21 (Cip1). Cell Cycle 2013; 12: 7.

    Article  Google Scholar 

  45. Zimniak T, Fitz V, Zhou H, Lampert F, Opravil S, Mechtler K et al. Spatiotemporal regulation of Ipl1/Aurora activity by direct Cdk1 phosphorylation. Curr Biol 2012; 22: 787–793.

    Article  CAS  Google Scholar 

  46. Barrett RM, Osborne TP, Wheatley SP . Phosphorylation of survivin at threonine 34 inhibits its mitotic function and enhances its cytoprotective activity. Cell Cycle 2009; 8: 278–283.

    Article  CAS  Google Scholar 

  47. Tsukahara T, Tanno Y, Watanabe Y . Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 2010; 467: 719–723.

    Article  CAS  Google Scholar 

  48. Nakajima Y, Cormier A, Tyers RG, Pigula A, Peng Y, Drubin DG et al. Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP regulates CPC-spindle interaction to ensure proper microtubule dynamics. J Cell Biol 2011; 194: 137–153.

    Article  CAS  Google Scholar 

  49. Date D, Dreier MR, Borton MT, Bekier ME, Taylor WR . Effects of phosphatase and proteasome inhibitors on Borealin phosphorylation and degradation. J Biochem 2012; 151: 361–369.

    Article  CAS  Google Scholar 

  50. Xu Z, Ogawa H, Vagnarelli P, Bergmann JH, Hudson DF, Ruchaud S et al. INCENP-aurora B interactions modulate kinase activity and chromosome passenger complex localization. J Cell Biol 2009; 187: 637–653.

    Article  CAS  Google Scholar 

  51. Mishima M, Pavicic V, Gruneberg U, Nigg EA, Glotzer M . Cell cycle regulation of central spindle assembly. Nature 2004; 430: 908–913.

    Article  CAS  Google Scholar 

  52. Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T et al. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 1998; 2: 877–885.

    Article  CAS  Google Scholar 

  53. Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL . PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 2002; 157: 1175–1186.

    Article  CAS  Google Scholar 

  54. Hu CK, Ozlu N, Coughlin M, Steen JJ, Mitchison TJ . Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis. Mol Biol Cell 2012; 23: 2702–2711.

    Article  CAS  Google Scholar 

  55. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76: 1013–1023.

    Article  CAS  Google Scholar 

  56. Wu S, Cetinkaya C, Munoz-Alonso MJ, von der LN, Bahram F, Beuger V et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003; 22: 351–360.

    Article  CAS  Google Scholar 

  57. Kreis NN, Sommer K, Sanhaji M, Kramer A, Matthess Y, Kaufmann M et al. Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Cell Cycle 2009; 8: 460–472.

    Article  CAS  Google Scholar 

  58. Sanhaji M, Friel CT, Kreis NN, Kramer A, Martin C, Howard J et al. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 2010; 30: 2594–2607.

    Article  CAS  Google Scholar 

  59. Sanhaji M, Louwen F, Zimmer B, Kreis NN, Roth S, Yuan J . Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle 2013; 12: 9 1340–51.

    Article  Google Scholar 

  60. Yuan J, Sanhaji M, Kramer A, Reindl W, Hofmann M, Kreis NN et al. Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol 2011; 179: 2091–2099.

    Article  CAS  Google Scholar 

  61. Kreis NN, Sanhaji M, Kramer A, Sommer K, Rodel F, Strebhardt K et al. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene 2010; 29: 5591–5603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Deutsche Krebshilfe (#108553 and #109672 to JY), Deutsche Forschungsgemeinschaft (#Yu 156/2-1 to JY) and by the LOEWE Center for Cell and Gene Therapy Frankfurt (III L 4- 518/17.004 (2010) to MAR). We thank Dr TU Mayer, University of Konstanz, for kindly providing the MKLP2 antibody. We are grateful to Drs KW Kinzler and B Vogelstein, Ludwig Center at Johns Hopkins, Howard Hughes Medical Institute, Baltimore, for the cell lines HCT116 p21+/+ and HCT116 p21−/−.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yuan.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreis, NN., Sanhaji, M., Rieger, M. et al. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene 33, 5716–5728 (2014). https://doi.org/10.1038/onc.2013.518

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.518

Keywords

This article is cited by

Search

Quick links