Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GSK3β controls epithelial–mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug

A Corrigendum to this article was published on 04 September 2017

Abstract

Glycogen synthase kinase 3 beta (GSK3β) is highly inactivated in epithelial cancers and is known to inhibit tumor migration and invasion. The zinc-finger-containing transcriptional repressor, Slug, represses E-cadherin transcription and enhances epithelial–mesenchymal transition (EMT). In this study, we find that the GSK3β-pSer9 level is associated with the expression of Slug in non-small cell lung cancer. GSK3β-mediated phosphorylation of Slug facilitates Slug protein turnover. Proteomic analysis reveals that the carboxyl terminus of Hsc70-interacting protein (CHIP) interacts with wild-type Slug (wtSlug). Knockdown of CHIP stabilizes the wtSlug protein and reduces Slug ubiquitylation and degradation. In contrast, nonphosphorylatable Slug-4SA is not degraded by CHIP. The accumulation of nondegradable Slug may further lead to the repression of E-cadherin expression and promote cancer cell migration, invasion and metastasis. Our findings provide evidence of a de novo GSK3β-CHIP-Slug pathway that may be involved in the progression of metastasis in lung cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Herbst RS, Heymach JV, Lippman SM . Lung cancer. N Engl J Med 2008; 359: 1367–1380.

    Article  CAS  PubMed  Google Scholar 

  2. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steeg PS . Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12: 895–904.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta GP, Massague J . Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    CAS  PubMed  Google Scholar 

  5. Peinado H, Olmeda D, Snail Cano A . Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  7. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  8. Schmalhofer O, Brabletz S, Brabletz T . E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28: 151–166.

    Article  CAS  PubMed  Google Scholar 

  9. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  10. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  11. Hajra KM, Chen DY, Fearon ER . The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  12. Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, Shetuni B et al. ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene 2010; 29: 1451–1462.

    Article  CAS  PubMed  Google Scholar 

  13. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 2005; 11: 8070–8078.

    Article  CAS  PubMed  Google Scholar 

  14. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009; 11: 694–704.

    Article  CAS  PubMed  Google Scholar 

  15. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32: 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  16. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  18. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor CT, Furuta GT, Synnestvedt K, Colgan SP . Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci USA 2000; 97: 12091–12096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esser C, Alberti S, Hohfeld J . Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 2004; 1695: 171–188.

    Article  CAS  PubMed  Google Scholar 

  21. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999; 19: 4535–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001; 3: 93–96.

    Article  CAS  PubMed  Google Scholar 

  23. McDonough H, Patterson C . CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 2003; 8: 303–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 2009; 11: 312–319.

    Article  CAS  PubMed  Google Scholar 

  25. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM . The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001; 3: 100–105.

    Article  CAS  PubMed  Google Scholar 

  26. Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO J 2004; 23: 4813–4823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L . Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 2002; 99: 12847–12852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rees I, Lee S, Kim H, Tsai FT . The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. Biochim Biophys Acta 2006; 1764: 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  29. Shimura H, Schwartz D, Gygi SP, Kosik KS . CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 2004; 279: 4869–4876.

    Article  CAS  PubMed  Google Scholar 

  30. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 2006; 26: 6985–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P . Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene 1993; 8: 841–847.

    CAS  PubMed  Google Scholar 

  32. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K et al. Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 2004; 279: 49571–49574.

    Article  CAS  PubMed  Google Scholar 

  33. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ciani L, Salinas PC . WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005; 6: 351–362.

    Article  CAS  PubMed  Google Scholar 

  35. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  36. G-Amlak M, Uddin S, Mahmud D, Damacela I, Lavelle D, Ahmed M et al. Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem Biophys Res Commun 2002; 297: 760–764.

    Article  CAS  PubMed  Google Scholar 

  37. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  38. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 2008; 320: 667–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee HY, Oh SH, Suh YA, Baek JH, Papadimitrakopoulou V, Huang S et al. Response of non-small cell lung cancer cells to the inhibitors of phosphatidylinositol 3-kinase/Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase pathways: an effective therapeutic strategy for lung cancer. Clin Cancer Res 2005; 11: 6065–6074.

    Article  CAS  PubMed  Google Scholar 

  40. Ellerbroek SM, Halbleib JM, Benavidez M, Warmka JK, Wattenberg EV, Stack MS et al. Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res 2001; 61: 1855–1861.

    CAS  PubMed  Google Scholar 

  41. Al-Mulla F, Bitar MS, Al-Maghrebi M, Behbehani AI, Al-Ali W, Rath O et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3beta. Cancer Res 2011; 71: 1334–1343.

    Article  CAS  PubMed  Google Scholar 

  42. Leis H, Segrelles C, Ruiz S, Santos M, Paramio JM . Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog 2002; 35: 180–185.

    Article  CAS  PubMed  Google Scholar 

  43. Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC et al. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 2008; 13: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farago M, Dominguez I, Landesman-Bollag E, Xu X, Rosner A . Cardiff RD et al. Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer Res 2005; 65: 5792–5801.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng H, Saito H, Masuda S, Yang X, Takano Y . Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res 2007; 27: 3561–3569.

    PubMed  Google Scholar 

  46. Karrasch T, Spaeth T, Allard B, Jobin C . PI3K-dependent GSK3ss(Ser9)-phosphorylation is implicated in the intestinal epithelial cell wound-healing response. PLoS One 2011; 6: e26340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D, Fermin D et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 2011; 8: 70–73.

    Article  CAS  PubMed  Google Scholar 

  48. Xu C, Kim NG, Gumbiner BM . Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 2009; 8: 4032–4039.

    Article  CAS  PubMed  Google Scholar 

  49. He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB . Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995; 374: 617–622.

    Article  CAS  PubMed  Google Scholar 

  50. Patel R, Gao M, Ahmad I, Fleming J, Singh LB, Rai TS et al. Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. J Clin Invest 2013; 123: 1157–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JY, Kim YM, Yang CH, Cho SK, Lee JW, Cho M . Functional regulation of Slug/Snail2 is dependent on GSK-3beta-mediated phosphorylation. FEBS J 2012; 279: 2929–2939.

    Article  CAS  PubMed  Google Scholar 

  52. Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ . Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic breast cancer 1, early onset (BRCA1) repression. Proc Natl Acad Sci USA 2012; 109: 16654–16659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.

    Article  CAS  PubMed  Google Scholar 

  54. Cheng JC, Auersperg N, Leung PC . EGF-induced EMT and invasiveness in serous borderline ovarian tumor cells: a possible step in the transition to low-grade serous carcinoma cells? PLoS One 7: e34071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Come C, Arnoux V, Bibeau F, Savagner P . Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J Mammary Gland Biol Neoplasia 2004; 9: 183–193.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang L, Amann JM, Kikuchi T, Porta R, Guix M, Gonzalez A et al. Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Res 2007; 67: 5587–5593.

    Article  CAS  PubMed  Google Scholar 

  57. Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 2012; 31: 4619–4629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katoh Y, Katoh M . Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009; 9: 873–886.

    Article  CAS  PubMed  Google Scholar 

  59. John JK, Paraiso KH, Rebecca VW, Cantini LP, Abel EV, Pagano N et al. GSK3beta inhibition blocks melanoma cell/host interactions by downregulating N-cadherin expression and decreasing FAK phosphorylation. J Invest Dermatol 2012; 132: 2818–2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo J . Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 2009; 273: 194–200.

    Article  CAS  PubMed  Google Scholar 

  61. Rajakishore M . Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 2010; 9: 1–15.

    Google Scholar 

  62. Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem 2012; 287: 15996–16006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Esser C, Scheffner M, Hohfeld J . The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 2005; 280: 27443–27448.

    Article  CAS  PubMed  Google Scholar 

  64. Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut 2012; 62: 496–508.

    Article  PubMed  Google Scholar 

  65. Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY et al. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 2007; 27: 4006–4017.

    Article  CAS  PubMed  Google Scholar 

  66. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21: 749–760.

    Article  CAS  PubMed  Google Scholar 

  67. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471: 104–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A . Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 2003; 163: 847–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 2008; 10: 812–824.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank MC Hung (Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, USA) for providing the plasmids for GSK3β, and Wen-Lung Wang, Yi-Ying Wu, Chi-Yuan Chen for technical assistance. This work was supported by grants from the National Science Council, Taiwan (NSC99-2628-B-006-031-MY3 NSC101-2325-B-006-018, NSC100-2321-B-002-071 and NSC101-2321-B002-068), National Taiwan University, Taiwan (10R71601-2), and National Institute of Health, USA (R01-GM-094231, to AIN). SP Wang is supported by a Human Frontier Science Program long-term fellowship. shRNA constructs were obtained from the National RNAi Core Facility at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T-M Hong or P-C Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, SH., Wang, WL., Chen, CY. et al. GSK3β controls epithelial–mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 33, 3172–3182 (2014). https://doi.org/10.1038/onc.2013.279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.279

Keywords

This article is cited by

Search

Quick links