Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of N-Myc interactor promotes epithelial–mesenchymal transition by activation of TGF-β/SMAD signaling

Abstract

Epithelial–mesenchymal transition is one of the critical cellular programs that facilitate the progression of breast cancer to an invasive disease. We have observed that the expression of N-myc interactor (NMI) decreases significantly during progression of breast cancer, specifically in invasive and metastatic stages. Recapitulation of this loss in breast cell lines with epithelial morphology (MCF10A (non-tumorigenic) and T47D (tumorigenic)) by silencing NMI expression causes mesenchymal-like morphological changes in 3D growth, accompanied by upregulation of SLUG and ZEB2 and increased invasive properties. Conversely, we found that restoring NMI expression attenuated the mesenchymal attributes of metastatic breast cancer cells, accompanied by distinctly circumscribed 3D growth with basement membrane deposition and decreased invasion. Further investigations into the downstream signaling modulated by NMI revealed that NMI expression negatively regulates SMAD signaling, which is a key regulator of cellular plasticity. We demonstrate that NMI blocks TGF-β/SMAD signaling via upregulation of SMAD7, a negative feedback regulator of the pathway. We also provide evidence that NMI activates STAT signaling, which negatively modulates TGF-β/SMAD signaling. Taken together, our findings suggest that loss of NMI during breast cancer progression could be one of the driving factors that enhance the invasive ability of breast cancer by aberrant activation of TGF-β/SMAD signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Price JE . The biology of metastatic breast cancer. Cancer 1990; 66: 1313–1320.

    Article  CAS  PubMed  Google Scholar 

  2. Micalizzi DS, Farabaugh SM, Ford HL . Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010; 15: 117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yilmaz M, Christofori G . EMT, the cytoskeleton, and cancer cell invasion. Canc Metastasis Rev 2009; 28: 15–33.

    Article  Google Scholar 

  4. Greenburg G, Hay ED . Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982; 95: 333–339.

    Article  CAS  PubMed  Google Scholar 

  5. Kalluri R . EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 2009; 119: 1417–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thiery JP . Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15: 740–746.

    Article  CAS  PubMed  Google Scholar 

  7. Lee JM, Dedhar S, Kalluri R, Thompson EW . The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vincent-Salomon A, Thiery JP . Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 2003; 5: 101–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drasin DJ, Robin TP, Ford HL . Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res 2011; 13: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yates C . Prostate tumor cell plasticity: a consequence of the microenvironment. Adv Exp Med Biol 2011; 720: 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao D, Dai C, Peng S . Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 2011; 9: 1608–1620.

    Article  CAS  PubMed  Google Scholar 

  12. Cano CE, Motoo Y, Iovanna JL . Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. ScientificWorld J 2010; 10: 1947–1957.

    Article  CAS  Google Scholar 

  13. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D et al. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011; 8: 27–33.

    Article  CAS  PubMed  Google Scholar 

  14. Krantz SB, Shields MA, Dangi-Garimella S, Munshi HG, Bentrem DJ . Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J Surg Res 2012; 173: 105–112.

    Article  PubMed  Google Scholar 

  15. Kang Y . Pro-metastasis function of TGF beta mediated by the Smad pathway. J Cell Biochem 2006; 98: 1380–1390.

    Article  CAS  PubMed  Google Scholar 

  16. Wakefield LM, Piek E, Bottinger EP . TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2001; 6: 67–82.

    Article  CAS  PubMed  Google Scholar 

  17. Baxley SE, Serra R . Inhibiting breast cancer progression by exploiting TGF beta signaling. Curr Drug Targets 2010; 11: 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  18. Taylor MA, Parvani JG, Schiemann WP . The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010; 15: 169–190.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bao J, Zervos AS . Isolation and characterization of Nmi, a novel partner of Myc proteins. Oncogene 1996; 12: 2171–2176.

    CAS  PubMed  Google Scholar 

  20. Zhu M, John S, Berg M, Leonard WJ . Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell 1999; 96: 121–130.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Lee T, Avraham HA . Novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer. J Biol Chem 2002; 277: 20965–20973.

    Article  CAS  PubMed  Google Scholar 

  22. Fillmore RA, Mitra A, Xi Y, Ju J, Scammell J, Shevde LA et al. Nmi (N-Myc interactor) inhibits Wnt/beta-catenin signaling and retards tumor growth. Int J Cancer 2009; 125: 556–564.

    Article  CAS  PubMed  Google Scholar 

  23. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 2008; 25: 629–642.

    Article  CAS  PubMed  Google Scholar 

  25. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  26. Zavadil J, Bottinger EP . TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  27. Postigo AA . Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 2003; 22: 2443–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joseph MJ, Dangi-Garimella S, Shields MA, Diamond ME, Sun L, Koblinski JE et al. Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J Cell Biochem 2009; 108: 726–736.

    Article  CAS  PubMed  Google Scholar 

  29. Schmitt E, Hoehn P, Huels C, Goedert S, Palm N, Rude E et al. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-gamma and is inhibited by transforming growth factor-beta. Eur J Immunol 1994; 24: 793–798.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao BG, Zhang GX, Ma CG, Link H . Transforming growth factor-beta 1 (TGF-beta1)-mediated inhibition of glial cell proliferation and down-regulation of intercellular adhesion molecule-1 (ICAM-1) are interrupted by interferon-gamma (IFN-gamma). Clin Exp Immunol 1996; 103: 475–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulloa L, Doody J, Massague J . Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999; 397: 710–713.

    Article  CAS  PubMed  Google Scholar 

  32. Xu J, Lamouille S, Derynck R . TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    Article  CAS  PubMed  Google Scholar 

  33. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  34. Nieto MA . The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27: 347–376.

    Article  CAS  PubMed  Google Scholar 

  35. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 2007; 213: 374–383.

    Article  CAS  PubMed  Google Scholar 

  36. De Wever O, Pauwels P, De Craene B, Sabbah M, Emami S, Redeuilh G et al. Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 2008; 130: 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    Article  CAS  PubMed  Google Scholar 

  38. Creighton CJ, Chang JC, Rosen JM . Epithelial–mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 253–260.

    Article  PubMed  Google Scholar 

  39. Takebe N, Warren RQ, Ivy SP . Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res 2011; 13: 211.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fuxe J, Vincent T, Garcia de Herreros A . Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 2010; 9: 2363–2374.

    Article  CAS  PubMed  Google Scholar 

  41. Nawshad A, Lagamba D, Polad A, Hay ED . Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 2005; 179: 11–23.

    Article  CAS  PubMed  Google Scholar 

  42. Tian YC, Fraser D, Attisano L, Phillips AO . TGF-beta1-mediated alterations of renal proximal tubular epithelial cell phenotype. Am J Physiol Renal Physiol 2003; 285: F130–F142.

    Article  CAS  PubMed  Google Scholar 

  43. Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE et al. Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2004; 64: 4523–4530.

    Article  CAS  PubMed  Google Scholar 

  44. Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P . TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112: 4557–4568.

    CAS  PubMed  Google Scholar 

  45. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A . TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16: 1987–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyazono K . Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85: 314–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 70: 968–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saika S, Ikeda K, Yamanaka O, Sato M, Muragaki Y, Ohnishi Y et al. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. Lab Invest 2004; 84: 1259–1270.

    Article  CAS  PubMed  Google Scholar 

  49. Yan X, Liu Z, Chen Y . Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai) 2009; 41: 263–272.

    Article  CAS  Google Scholar 

  50. Yan X, Chen YG . Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 2011; 434: 1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 2012; 31: 5162–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cocolakis E, Dai M, Drevet L, Ho J, Haines E, Ali S et al. Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J Biol Chem 2008; 283: 1293–1307.

    Article  CAS  PubMed  Google Scholar 

  53. Iwamoto T, Oshima K, Seng T, Feng X, Oo ML, Hamaguchi M et al. STAT and SMAD signaling in cancer. Histol Histopathol 2002; 17: 887–895.

    CAS  PubMed  Google Scholar 

  54. Weng H, Mertens PR, Gressner AM, Dooley S . IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 2007; 46: 295–303.

    Article  CAS  PubMed  Google Scholar 

  55. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J . Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gunasinghe NP, Wells A, Thompson EW, Hugo HJ . Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Canc Metastasis Rev 2012; 31: 469–478.

    Article  CAS  Google Scholar 

  57. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998; 1: 611–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant support: USPHS grants CA140472 and Mayer Mitchell Award (RSS) and CA138850 (LAS). J. Rostas is a recipient of the American Medical Association Seed Grant 2011. We thank Dr Charles V. Clevenger (Northwestern University, Chicago, IL) for the gift of the β-casein and lactogenic hormone response element reporters and Dr Robert Weinberg (Whitehead Institute, MA) for the gift of HME and HMEC cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Samant.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devine, D., Rostas, J., Metge, B. et al. Loss of N-Myc interactor promotes epithelial–mesenchymal transition by activation of TGF-β/SMAD signaling. Oncogene 33, 2620–2628 (2014). https://doi.org/10.1038/onc.2013.215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.215

Keywords

This article is cited by

Search

Quick links