Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation

Abstract

Activated Cdc42-associated kinase 1 (ACK1) is a nonreceptor tyrosine kinase linked to cellular transformation. The aberrant regulation of ACK1 promotes tumor progression and metastasis. Therefore, ACK1 is regarded as a valid target in cancer therapy. Seven in absentia homolog (SIAH) ubiquitin ligases facilitate substrate ubiquitinylation that targets proteins to the proteasomal degradation pathway. Here we report that ACK1 and SIAH1 from Homo sapiens interact in a yeast two-hybrid screen. Protein–protein interaction studies and protein degradation analyses using deletion and point mutants of ACK1 verify that SIAH1 and the related SIAH2 interact with ACK1. The association between SIAHs and ACK1 depends on the integrity of a highly conserved SIAH-binding motif located in the far C-terminus of ACK1. Furthermore, we demonstrate that the interaction of ACK1 with SIAH1 and the induction of proteasomal degradation of ACK1 by SIAH1 are independent of ACK1’s kinase activity. Chemical inhibitors blocking proteasomal activity corroborate that SIAH1 and SIAH2 destabilize the ACK1 protein by inducing its proteasomal turnover. This mechanism apparently differs from the lysosomal pathway targeting ACK1 after stimulation with the epidermal growth factor. Our data also show that ACK1, but not ACK1 mutants lacking the SIAH binding motif, has a discernable negative effect on SIAH levels. Additionally, knockdown approaches targeting the SIAH2 mRNA uncover specifically that the induction of SIAH2 expression, by hormonally-induced estrogen receptor (ER) activation, decreases the levels of ACK1 in luminal human breast cancer cells. Collectively, our data provide novel insights into the molecular mechanisms modulating ACK1 and they position SIAH ubiquitin ligases as negative regulators of ACK1 in transformed cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. House CM, Möller A, Bowtell DD . Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 2009; 69: 8835–8838.

    Article  CAS  Google Scholar 

  2. Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK . SIAH proteins: Critical roles in leukemogenesis. Leukemia 2012, (in press).

  3. Liu M, Hsu J, Chan C, Li Z, Zhou Q . The ubiquitin ligase SIAH1 controls Ell2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell 2012; 46: 325–334.

    Article  CAS  Google Scholar 

  4. Metzger MB, Hristova VA, Weissman AM . HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 2012; 125: 531–537.

    Article  CAS  Google Scholar 

  5. Mogk A, Schmidt R, Bukau B . The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 2007; 17: 165–172.

    Article  CAS  Google Scholar 

  6. Zhao HL, Ueki N, Hayman MJ . The Ski protein negatively regulates Siah2-mediated HDAC3 degradation. Biochem Biophys Res Commun 2010; 399: 623–628.

    Article  CAS  Google Scholar 

  7. Perissi V, Scafoglio C, Zhang J, Ohgi KA, Rose DW, Glass CK et al. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell 2008; 29: 755–766.

    Article  CAS  Google Scholar 

  8. Wu H, Lin Y, Shi Y, Qian W, Tian Z, Yu Y et al. SIAH-1 interacts with mammalian polyhomeotic homologues HPH2 and affects its stability via the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2010; 397: 391–396.

    Article  CAS  Google Scholar 

  9. Frasor J, Danes JM, Funk CC, Katzenellenbogen BS . Estrogen down-regulation of the corepressor N-CoR: mechanism and implications for estrogen derepression of N-CoR-regulated genes. Proc Natl Acad Sci USA 2005; 102: 13153–13157.

    Article  CAS  Google Scholar 

  10. Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT et al. SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 2004; 13: 1525–1534.

    Article  CAS  Google Scholar 

  11. Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DD, Ronai Z et al. Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 2011; 10: 2592–2602.

    Article  CAS  Google Scholar 

  12. Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M et al. Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 2006; 24: 29–39.

    Article  CAS  Google Scholar 

  13. Bursen A, Moritz S, Gaussmann A, Dingermann T, Marschalek R . Interaction of AF4 wild-type and AF4.MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? Oncogene 2004; 23: 6237–6249.

    Article  CAS  Google Scholar 

  14. Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D et al. Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 2002; 21: 5756–5765.

    Article  CAS  Google Scholar 

  15. Buchwald M, Pietschmann K, Müller JP, Böhmer FD, Heinzel T, Krämer OH . Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 2010; 24: 1412–1421.

    Article  CAS  Google Scholar 

  16. Krämer OH, Müller S, Buchwald M, Reichardt S, Heinzel T . Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. Faseb J 2008; 22: 1369–1379.

    Article  Google Scholar 

  17. Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T et al. Differential regulation of PML-RARalpha stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol 2012; 44: 132–138.

    Article  CAS  Google Scholar 

  18. Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, Spiekermann K et al. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor Panobinostat and FLT3-specific inhibitors. Mol Cancer Ther 2012, (in press).

  19. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 2008; 10: 812–824.

    Article  CAS  Google Scholar 

  20. Calzado MA, de la Vega L, Möller A, Bowtell DD, Schmitz ML . An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol 2009; 11: 85–91.

    Article  CAS  Google Scholar 

  21. Yun S, Möller A, Chae SK, Hong WP, Bae YJ, Bowtell DD et al. Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J Biol Chem 2008; 283: 1034–1042.

    Article  CAS  Google Scholar 

  22. Wen YY, Yang ZQ, Song M, Li BL, Yao XH, Chen XL et al. The expression of SIAH1 is downregulated and associated with Bim and apoptosis in human breast cancer tissues and cells. Mol Carcinog 2010; 49: 440–449.

    CAS  PubMed  Google Scholar 

  23. Wen YY, Yang ZQ, Song M, Li BL, Zhu JJ, Wang EH . SIAH1 induced apoptosis by activation of the JNK pathway and inhibited invasion by inactivation of the ERK pathway in breast cancer cells. Cancer Sci 2010; 101: 73–79.

    Article  CAS  Google Scholar 

  24. Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R . Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 2007; 100: 151–160.

    Article  CAS  Google Scholar 

  25. Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N . Dimerization of hSiah proteins regulates their stability. Biochem Biophys Res Commun 2006; 348: 857–863.

    Article  CAS  Google Scholar 

  26. Xu Z, Sproul A, Wang W, Kukekov N, Greene LA . Siah1 interacts with the scaffold protein POSH to promote JNK activation and apoptosis. J Biol Chem 2006; 281: 303–312.

    Article  CAS  Google Scholar 

  27. Ahmed AU, Schmidt RL, Park CH, Reed NR, Hesse SE, Thomas CF et al. Effect of disrupting seven-in-absentia homolog 2 function on lung cancer cell growth. J Natl Cancer Inst 2008; 100: 1606–1629.

    Article  CAS  Google Scholar 

  28. Lin Q, Wang J, Childress C, Sudol M, Carey DJ, Yang W . HECTE3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol Cell Biol 2010; 30: 1541–1554.

    Article  CAS  Google Scholar 

  29. Korzeniewski N, Cuevas R, Duensing A, Duensing S . Daughter centriole elongation is controlled by proteolysis. Mol Biol Cell 2010; 21: 3942–3951.

    Article  CAS  Google Scholar 

  30. Khurana A, Nakayama K, Williams S, Davis RJ, Mustelin T, Ronai Z . Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J Biol Chem 2006; 281: 35316–35326.

    Article  CAS  Google Scholar 

  31. Mahajan NP, Whang YE, Mohler JL, Earp HS . Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 2005; 65: 10514–10523.

    Article  CAS  Google Scholar 

  32. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 2007; 104: 8438–8443.

    Article  CAS  Google Scholar 

  33. Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One 2010; 5: e9646.

    Article  Google Scholar 

  34. Mahajan K, Mahajan NP . Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol 2010; 224: 327–333.

    Article  CAS  Google Scholar 

  35. House CM, Hancock NC, Möller A, Cromer BA, Fedorov V, Bowtell DD et al. Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure 2006; 14: 695–701.

    Article  CAS  Google Scholar 

  36. Twomey E, Li Y, Lei J, Sodja C, Ribecco-Lutkiewicz M, Smith B et al. Regulation of MYPT1 stability by the E3 ubiquitin ligase SIAH2. Exp Cell Res 2010; 316: 68–77.

    Article  CAS  Google Scholar 

  37. Yokoyama N, Miller WT . Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem 2003; 278: 47713–47723.

    Article  CAS  Google Scholar 

  38. Jansen MP, Ruigrok-Ritstier K, Dorssers LC, van Staveren IL, Look MP, Meijer-van Gelder ME et al. Downregulation of SIAH2, an ubiquitin E3 ligase, is associated with resistance to endocrine therapy in breast cancer. Breast Cancer Res Treat 2009; 116: 263–271.

    Article  CAS  Google Scholar 

  39. Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y et al. LMTK3 is implicated in endocrine resistance via multiple signaling pathways. Oncogene 2012, (in press).

  40. Krämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo J 2003; 22: 3411–3420.

    Article  Google Scholar 

  41. Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y . Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene 2005; 24: 4362–4369.

    Article  CAS  Google Scholar 

  42. Li C, Lin M, Liu J . Identification of PRC1 as the p53 target gene uncovers a novel function of p53 in the regulation of cytokinesis. Oncogene 2004; 23: 9336–9347.

    Article  CAS  Google Scholar 

  43. Holliday DL, Speirs V . Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13: 215.

    Article  Google Scholar 

  44. Prieto-Echague V, Miller WT . Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct 2011; 2011: 742372.

    Article  Google Scholar 

  45. Pao-Chun L, Chan PM, Chan W, Manser E . Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem 2009; 284: 34954–34963.

    Article  CAS  Google Scholar 

  46. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 2005; 102: 15901–15906.

    Article  CAS  Google Scholar 

  47. Mahajan K, Challa S, Coppola D, Lawrence H, Luo Y, Gevariya H et al. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate 2010; 70: 1274–1285.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chua BT, Lim SJ, Tham SC, Poh WJ, Ullrich A . Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Mol Oncol 2010; 4: 323–334.

    Article  CAS  Google Scholar 

  49. Howlin J, Rosenkvist J, Andersson T . TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res 2008; 10: R36.

    Article  Google Scholar 

  50. Mahajan K, Coppola D, Chen YA, Zhu W, Lawrence HR, Lawrence NJ et al. Ack1 tyrosine kinase activation correlates with pancreatic cancer progression. Am J Pathol 2012; 180: 1386–1393.

    Article  CAS  Google Scholar 

  51. Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E . Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem 2009; 284: 8185–8194.

    Article  CAS  Google Scholar 

  52. Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin cancer res 2011; 17: 1147–1159.

    Article  CAS  Google Scholar 

  53. Sarkar TR, Sharan S, Wang J, Pawar SA, Cantwell CA, Johnson PF et al. Identification of a Src tyrosine kinase/SIAH2 E3 ubiquitin ligase pathway that regulates C/EBPdelta expression and contributes to transformation of breast tumor cells. Mol Cell Biol 2012; 32: 320–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Kosan, M. Korfei and S. Scheiding for their discussions and their excellent help. We are grateful to M. Kögl, N. Varin-Blank, Z. Ronai, R. Marschalek, H. Bursen, A. Baniahmad, O. Werz and O. Huber for providing material. Grant support: German Cancer Aid (FKZ102362); Wilhelm-Sander Foundation (No. 2010.078.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O H Krämer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchwald, M., Pietschmann, K., Brand, P. et al. SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation. Oncogene 32, 4913–4920 (2013). https://doi.org/10.1038/onc.2012.515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.515

Keywords

This article is cited by

Search

Quick links