Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo

Abstract

αvβ6 integrin expression is upregulated on a wide range of epithelial tumours, and is thought to play a role in modulating tumour growth. Here we describe a human therapeutic antibody 264RAD, which binds and inhibits αvβ6 integrin function. 264RAD cross-reacts with human, mouse and cynomolgus monkey αvβ6, and inhibits binding to all ligands including the latency-associated peptide of TGF-β. Screening across a range of integrins revealed that 264RAD also binds and inhibits the related integrin αvβ8, but not the integrins α5β1, αvβ3, αvβ5 and α4β1. In vitro 264RAD inhibited invasion of VB6 and Detroit 562 cells in a Matrigel invasion assay and αvβ6 mediated production of matrix metalloproteinase-9 in Calu-3 cells. It inhibited TGF-β-mediated activation of dermal skin fibroblasts by preventing local activation of TGF-β by NCI-H358 tumour cells in a tumour cell−fibroblast co-culture assay. In vivo 264RAD showed dose-dependent inhibition of Detroit 562 tumour growth, regressing established tumours when dosed at 20 mg/kg once weekly. The reduction in growth associated with 264RAD was related to a dose-dependent inhibition of Ki67 and phospho-ERK and a reduction of αvβ6 expression in the tumour cells, coupled to a reduction in fibronectin and alpha smooth muscle actin expression in stromal fibroblasts. 264RAD also reduced the growth and metastasis of orthotopic 4T1 tumours. At 20 mg/kg growth of both the primary tumour and the number of metastatic deposits in lung were reduced. The data support the conclusion that 264RAD is a potent inhibitor of αvβ6 integrin, with some activity against αvβ8 integrin, that reduces both tumour growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

α-SMA:

alpha smooth muscle actin

GST:

glutathione-S-transferase

MVD:

microvessel density

MVA:

microvessel area

TGF-β LAP:

transforming growth factor β latency-associated peptide

References

  1. Sheppard D, Rozzo C, Starr L, Quaranta V, Erle DJ, Pytela R . Complete amino acid sequence of a novel integrin beta subunit (beta 6) identified in epithelial cells using the polymerase chain reaction. J Biol Chem 1990; 265: 11502–11507.

    CAS  PubMed  Google Scholar 

  2. Busk M, Pytela R, Sheppard D . Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem 1992; 267: 5790–5796.

    CAS  PubMed  Google Scholar 

  3. Yokosaki Y, Monis H, Chen J, Sheppard D . Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains. J Biol Chem 1996; 271: 24144–24150.

    Article  CAS  Google Scholar 

  4. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96: 319–328.

    Article  CAS  Google Scholar 

  5. DiCara D, Rapisarda C, Sutcliffe JL, Violette SM, Weinreb PH, Hart IR et al. Structure-function analysis of Arg-Gly-Asp helix motifs in alpha v beta 6 integrin ligands. J Biol Chem 2007; 282: 9657–9665.

    Article  CAS  Google Scholar 

  6. Breuss JM, Gallo J, DeLisser HM, Klimanskaya IV, Folkesson HG, Pittet JF et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci 1995; 108: 2241–2251.

    CAS  PubMed  Google Scholar 

  7. Regezi JA, Ramos DM, Pytela R, Dekker NP, Jordan RC . Tenascin and beta 6 integrin are overexpressed in floor of mouth in situ carcinomas and invasive squamous cell carcinomas. Oral Oncol 2002; 38: 332–336.

    Article  CAS  Google Scholar 

  8. Sipos B, Hahn D, Carceller A, Piulats J, Hedderich J, Kalthoff H et al. Immunohistochemical screening for beta6-integrin subunit expression in adenocarcinomas using a novel monoclonal antibody reveals strong up-regulation in pancreatic ductal adenocarcinomas in vivo and in vitro. Histopathology 2004; 45: 226–236.

    Article  CAS  Google Scholar 

  9. Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H et al. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 2005; 115: 339–347.

    Article  CAS  Google Scholar 

  10. Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS . Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem 2002; 50: 1371–1380.

    Article  CAS  Google Scholar 

  11. Arihiro K, Kaneko M, Fujii S, Inai K, Yokosaki Y . Significance of alpha 9 beta 1 and alpha v beta 6 integrin expression in breast carcinoma. Breast Cancer 2000; 7: 19–26.

    Article  CAS  Google Scholar 

  12. Elayadi AN, Samli KN, Prudkin L, Liu YH, Bian A, Xie XJ et al. A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for non-small cell lung cancer. Cancer Res 2007; 67: 5889–5895.

    Article  CAS  Google Scholar 

  13. Ahmed N, Niu J, Dorahy DJ, Gu X, Andrews S, Meldrum CJ et al. Direct integrin alphavbeta6-ERK binding: implications for tumour growth. Oncogene 2002; 21: 1370–1380.

    Article  CAS  Google Scholar 

  14. Morgan MR, Thomas GJ, Russell A, Hart IR, Marshall JF . The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9. J Biol Chem 2004; 279: 26533–26539.

    Article  CAS  Google Scholar 

  15. Al-Hazmi N, Thomas GJ, Speight PM, Whawell SA . The 120 kDa cell-binding fragment of fibronectin up-regulates migration of alphavbeta6-expressing cells by increasing matrix metalloproteinase-2 and -9 secretion. Eur J Oral Sci 2007; 115: 454–458.

    Article  CAS  Google Scholar 

  16. Thomas GJ, Lewis MP, Hart IR, Marshall JF, Speight PM . AlphaVbeta6 integrin promotes invasion of squamous carcinoma cells through up-regulation of matrix metalloproteinase-9. Int J Cancer 2001; 92: 641–650.

    Article  CAS  Google Scholar 

  17. Ahmed N, Pansino F, Clyde R, Murthi P, Quinn MA, Rice GE et al. Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis 2002; 23: 237–244.

    Article  CAS  Google Scholar 

  18. Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S et al. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 2007; 67: 5275–5284.

    Article  CAS  Google Scholar 

  19. Marsh D, Dickinson S, Neill GW, Marshall JF, Hart IR, Thomas GJ . Alpha vbeta 6 Integrin promotes the invasion of morphoeic basal cell carcinoma through stromal modulation. Cancer Res 2008; 68: 3295–3303.

    Article  CAS  Google Scholar 

  20. Morgan MR, Jazayeri M, Ramsay AG, Thomas GJ, Boulanger MJ, Hart IR et al. Psoriasin (S100A7) associates with integrin β6 subunit and is required for αvβ6-dependent carcinoma cell invasion. Oncogene 2011; 30: 1422–1435.

    Article  CAS  Google Scholar 

  21. Azare J, Leslie K, Al-Ahmadie H, Gerald W, Weinreb PH, Violette SM et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Mol Cell Biol 2007; 27: 4444–4453.

    Article  CAS  Google Scholar 

  22. Thomas GJ, Lewis MP, Whawell SA, Russell A, Sheppard D, Hart IR et al. Expression of the alphavbeta6 integrin promotes migration and invasion in squamous carcinoma cells. J Invest Dermatol 2001; 117: 67–73.

    Article  CAS  Google Scholar 

  23. Annes JP, Chen Y, Munger JS, Rifkin DB . Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 2004; 165: 723–734.

    Article  CAS  Google Scholar 

  24. Thomas GJ, Hart IR, Speight PM, Marshall JF . Binding of TGF-beta1 latency-associated peptide (LAP) to alpha(v)beta6 integrin modulates behaviour of squamous carcinoma cells. Br J Cancer 2002; 87: 859–867.

    Article  CAS  Google Scholar 

  25. Popov Y, Patsenker E, Stickel F, Zaks J, Bhaskar KR, Niedobitek G et al. Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol 2008; 48: 453–464.

    Article  CAS  Google Scholar 

  26. Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM et al. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Am J Pathol 2003; 163: 1261–1273.

    Article  CAS  Google Scholar 

  27. Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008; 177: 56–65.

    Article  CAS  Google Scholar 

  28. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 2008; 177: 82–90.

    Article  CAS  Google Scholar 

  29. Hahm K, Lukashev ME, Luo Y, Yang WJ, Dolinski BM, Weinreb PH et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol 2007; 170: 110–125.

    Article  CAS  Google Scholar 

  30. Jenkins RG, Su X, Su G, Scotton CJ, Camerer E, Laurent GJ et al. Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest 2006; 116: 1606–1614.

    Article  CAS  Google Scholar 

  31. Van Aarsen LA, Leone DR, Ho S, Dolinski BM, McCoon PE, LePage DJ et al. Thomas GJ, Weinreb PH, Fawell SE, Violette SM. Antibody-mediated blockade of integrin alpha v beta 6 inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism. Cancer Res 2008; 68: 561–570.

    Article  Google Scholar 

  32. Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 2002; 157: 493–507.

    Article  CAS  Google Scholar 

  33. Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S et al. Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 2005; 166: 1883–1894.

    Article  CAS  Google Scholar 

  34. Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb PH, Horan GS et al. Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci 2009; 122: 227–232.

    Article  CAS  Google Scholar 

  35. Cambier S, Mu DZ, O'Connell D, Boylen K, Travis W, Liu WH et al. A role for the integrin alphavbeta8 in the negative regulation of epithelial cell growth. Cancer Res 2000; 60: 7084–7093.

    CAS  PubMed  Google Scholar 

  36. Su H, Kim H, Pawlikowska L, Kitamura H, Shen F, Cambier S et al. Reduced expression of integrin alphavbeta8 is associated with brain arteriovenous malformation pathogenesis. Am J Pathol 2010; 176: 1018–1027.

    Article  CAS  Google Scholar 

  37. Babcook JS, Leslie KB, Olsen OA, Salmon RA, Schrader JW . A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci USA 1996; 93: 7843–7848.

    Article  CAS  Google Scholar 

  38. Ludbrook SB, Barry ST, Delves CJ, Horgan CM . The integrin alphavbeta3 is a receptor for the latency-associated peptides of transforming growth factors beta1 and beta3. Biochem J 2003; 369: 311–318.

    Article  CAS  Google Scholar 

  39. Ryer EJ, Hom RP, Sakakibara K, Nakayama KI, Nakayama K, Faries PL et al. PKCdelta is necessary for Smad3 expression and transforming growth factor beta-induced fibronectin synthesis in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2006; 26: 780–786.

    Article  CAS  Google Scholar 

  40. Ronnov-Jessen L, Petersen OW . Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. implications for myofibroblast generation in breast neoplasia. Lab Invest 1993; 68: 696–707.

    CAS  PubMed  Google Scholar 

  41. Mateu MG, Valero ML, Andreu D, Domingo E . Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem 1996; 271: 12814–12819.

    Article  CAS  Google Scholar 

  42. Kogelberg H, Tolner B, Thomas GJ, Di Cara D, Minogue S, Ramesh B et al. Engineering a single-chain Fv antibody to alpha v beta 6 integrin using the specificity-determining loop of a foot-and-mouth disease virus. J Mol Biol 2008; 382: 385–401.

    Article  CAS  Google Scholar 

  43. Hannigan A, Smith P, Kalna G, Lo Nigro C, Orange C, O'Brien DI et al. Epigenetic downregulation of human disabled homolog 2 switches TGF-beta from a tumor suppressor to a tumor promoter. J Clin Invest 2010; 120: 2842–2857.

    Article  CAS  Google Scholar 

  44. Fleming YM, Ferguson GJ, Spender LC, Larsson J, Karlsson S, Ozanne BW et al. TGF-beta-mediated activation of RhoA signalling is required for efficient (V12)HaRas and (V600E)BRAF transformation. Oncogene 2009; 28: 983–993.

    Article  CAS  Google Scholar 

  45. Zhong Z, Carroll KD, Policarpio D, Osborn C, Gregory M, Bassi R et al. Anti-transforming growth factor beta receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin Cancer Res 2010; 16: 1191–1205.

    Article  CAS  Google Scholar 

  46. Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 2011; 30: 806–821.

    Article  CAS  Google Scholar 

  47. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2005; 344: 539–548.

    Article  Google Scholar 

  48. Culhane AC, Quackenbush J . Confounding effects in ‘A six-gene signature predicting breast cancer lung metastasis’. Cancer Res 2009; 69: 7480–7485.

    Article  CAS  Google Scholar 

  49. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 2011; 17: 1514–1520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Adrian Churchman was funded by a MRC Pilot Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Barry.

Ethics declarations

Competing interests

CE, JK, KM, VNJ, NRS, HMW, DCB, VB, SJR CR STB are current employees of AstraZeneca. AA, JSK, JR and INF are current or former employees of Amgen/Abgenix. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberlein, C., Kendrew, J., McDaid, K. et al. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene 32, 4406–4416 (2013). https://doi.org/10.1038/onc.2012.460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.460

Keywords

This article is cited by

Search

Quick links