Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer

Abstract

Non-small cell lung cancer (NSCLC) is a prevalent and devastating disease that claims more lives than breast, prostate, colon and pancreatic cancers combined. Current research suggests that standard chemotherapy regimens have been optimized to maximal efficiency. Promising new treatment strategies involve novel agents targeting molecular aberrations present in subsets of NSCLC. We evaluated 88 human NSCLC tumors of diverse histology and identified Mer and Axl as receptor tyrosine kinases (RTKs) overexpressed in 69% and 93%, respectively, of tumors relative to surrounding normal lung tissue. Mer and Axl were also frequently overexpressed and activated in NSCLC cell lines. Ligand-dependent Mer or Axl activation stimulated MAPK, AKT and FAK signaling pathways indicating roles for these RTKs in multiple oncogenic processes. In addition, we identified a novel pro-survival pathway—involving AKT, CREB, Bcl-xL, survivin, and Bcl-2—downstream of Mer, which is differentially modulated by Axl signaling. We demonstrated that short hairpin RNA (shRNA) knockdown of Mer or Axl significantly reduced NSCLC colony formation and growth of subcutaneous xenografts in nude mice. Mer or Axl knockdown also improved in vitro NSCLC sensitivity to chemotherapeutic agents by promoting apoptosis. When comparing the effects of Mer and Axl knockdown, Mer inhibition exhibited more complete blockade of tumor growth while Axl knockdown more robustly improved chemosensitivity. These results indicate that Mer and Axl have complementary and overlapping roles in NSCLC and suggest that treatment strategies targeting both RTKs may be more effective than singly-targeted agents. Our findings validate Mer and Axl as potential therapeutic targets in NSCLC and provide justification for development of novel therapeutic compounds that selectively inhibit Mer and/or Axl.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Society AC . Cancer Facts & Figures 2012. American Cancer Society, Atlanta, 2012.

    Google Scholar 

  2. SEER Cancer Statistics Review, 1975–2008 [database on the Internet] National Cancer Institute, 2011 [cited 1/25/2012]. Available from: http://seer.cancer.gov/csr/1975_2008/.

  3. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 2011; 12: 1004–1012.

    Article  CAS  Google Scholar 

  4. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947–957.

    Article  CAS  Google Scholar 

  5. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011; 29: 2046–2051.

    Article  Google Scholar 

  6. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002; 62: 6997–7000.

    CAS  Google Scholar 

  7. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res 2008; 68: 6913–6921.

    Article  CAS  Google Scholar 

  8. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 2005; 65: 1642–1646.

    Article  CAS  Google Scholar 

  9. Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 2007; 67: 11924–11932.

    Article  CAS  Google Scholar 

  10. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    Article  CAS  Google Scholar 

  11. Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 2008; 68: 9375–9383.

    Article  CAS  Google Scholar 

  12. Sunaga N, Shames DS, Girard L, Peyton M, Larsen JE, Imai H et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol Cancer Ther 2011; 10: 336–346.

    Article  CAS  Google Scholar 

  13. Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L et al. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 2011; 10: 2426–2436.

    Article  CAS  Google Scholar 

  14. Janku F, Garrido-Laguna I, Petruzelka LB, Stewart DJ, Kurzrock R . Novel therapeutic targets in non-small cell lung cancer. J Thorac Oncol 2011; 6: 1601–1612.

    Article  Google Scholar 

  15. Linger RMA, Keating AK, Earp HS, Graham DK . TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100: 35–83.

    Article  CAS  Google Scholar 

  16. Brandao L, Migdall-Wilson J, Eisenman K, Graham DK . TAM receptors in leukemia: expression, signaling, and therapeutic implications. Critical reviews in oncogenesis 2011; 16: 47–63.

    Article  Google Scholar 

  17. Linger RMA, Keating AK, Earp HS, Graham DK . Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets 2010; 14: 1073–1090.

    Article  CAS  Google Scholar 

  18. Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009; 28: 3442–3455.

    Article  CAS  Google Scholar 

  19. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 2010; 29: 5254–5264.

    Article  CAS  Google Scholar 

  20. Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, Lee HS et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia 2005; 7: 1058–1064.

    Article  CAS  Google Scholar 

  21. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190–1203.

    Article  CAS  Google Scholar 

  22. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002; 20: 2417–2428.

    Article  CAS  Google Scholar 

  23. Roux PP, Blenis J . ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68: 320–344.

    Article  CAS  Google Scholar 

  24. Aggarwal S, Kim SW, Ryu SH, Chung WC, Koo JS . Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res 2008; 68: 981–988.

    Article  CAS  Google Scholar 

  25. Reeve JG, Xiong J, Morgan J, Bleehen NM . Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance. Br J Cancer 1996; 73: 1193–1200.

    Article  CAS  Google Scholar 

  26. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    Article  CAS  Google Scholar 

  27. Zhang LQ, Wang J, Jiang F, Xu L, Liu FY, Yin R . Prognostic value of survivin in patients with non-small cell lung carcinoma: a systematic review with meta-analysis. PLoS One 2012; 7: e34100.

    Article  CAS  Google Scholar 

  28. Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM . Bcl-2 overexpression results in reciprocal downregulation of Bcl-X(L) and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene 1999; 18: 1457–1464.

    Article  CAS  Google Scholar 

  29. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527–540.

    Article  CAS  Google Scholar 

  30. Oliver L, Hue E, Rossignol J, Bougras G, Hulin P, Naveilhan P et al. Distinct roles of Bcl-2 and Bcl-Xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation. PLoS One 2011; 6: e19820.

    Article  CAS  Google Scholar 

  31. Shinoura N, Yoshida Y, Nishimura M, Muramatsu Y, Asai A, Kirino T et al. Expression level of Bcl-2 determines anti- or proapoptotic function. Cancer Res 1999; 59: 4119–4128.

    CAS  PubMed  Google Scholar 

  32. Grosso S, Puissant A, Dufies M, Colosetti P, Jacquel A, Lebrigand K et al. Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors. Mol Cancer Ther 2009; 8: 1924–1933.

    Article  CAS  Google Scholar 

  33. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 2009; 69: 6871–6878.

    Article  CAS  Google Scholar 

  34. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007; 26: 3909–3919.

    Article  CAS  Google Scholar 

  35. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res 2010; 70: 1544–1554.

    Article  CAS  Google Scholar 

  36. Hong CC, Lay JD, Huang JS, Cheng AL, Tang JL, Lin MT et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett 2008; 268: 314–324.

    Article  CAS  Google Scholar 

  37. Macleod K, Mullen P, Sewell J, Rabiasz G, Lawrie S, Miller E et al. Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res 2005; 65: 6789–6800.

    Article  CAS  Google Scholar 

  38. Keating AK, Kim GK, Jones AE, Donson AM, Ware K, Mulcahy JM et al. Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther 2010; 9: 1298–1307.

    Article  CAS  Google Scholar 

  39. Keating AK, Salzberg DB, Sather S, Liang X, Nickoloff S, Anwar A et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 2006; 25: 6092–6100.

    Article  CAS  Google Scholar 

  40. Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M . Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer 2001; 37: 2264–2274.

    Article  CAS  Google Scholar 

  41. Balogh I, Hafizi S, Stenhoff J, Hansson K, Dahlback B . Analysis of Gas6 in human platelets and plasma. Arterioscler Thromb Vasc Biol 2005; 25: 1280–1286.

    Article  CAS  Google Scholar 

  42. Gustafsson A, Martuszewska D, Johansson M, Ekman C, Hafizi S, Ljungberg B et al. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res 2009; 15: 4742–4749.

    Article  CAS  Google Scholar 

  43. Jansen FH, van Rijswijk A, Teubel W, van Weerden WM, Reneman S, van den Bemd GJ et al. Profiling of antibody production against xenograft-released proteins by protein microarrays discovers prostate cancer markers. J Proteome Res 2012; 11: 728–735.

    Article  CAS  Google Scholar 

  44. Wu J, Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Gottsater A et al. Increased plasma levels of the soluble Mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis. Arthr Res Ther 2011; 13: R62.

    Article  CAS  Google Scholar 

  45. Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Dahlback B . Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology 2011; 50: 1064–1069.

    Article  CAS  Google Scholar 

  46. Shankar SL, O'Guin K, Kim M, Varnum B, Lemke G, Brosnan CF et al. Gas6/Axl signaling activates the phosphatidylinositol 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor alpha-induced apoptosis. J Neurosci 2006; 26: 5638–5648.

    Article  CAS  Google Scholar 

  47. Allen MP, Linseman DA, Udo H, Xu M, Schaack JB, Varnum B et al. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase. Mol Cell Biol 2002; 22: 599–613.

    Article  CAS  Google Scholar 

  48. Allen MP, Xu M, Linseman DA, Pawlowski JE, Bokoch GM, Heidenreich KA et al. Adhesion-related kinase repression of gonadotropin-releasing hormone gene expression requires Rac activation of the extracellular signal-regulated kinase pathway. J Biol Chem 2002; 277: 38133–38140.

    Article  CAS  Google Scholar 

  49. Guttridge KL, Luft JC, Dawson TL, Kozlowska E, Mahajan NP, Varnum B et al. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation. J Biol Chem 2002; 277: 24057–24066.

    Article  CAS  Google Scholar 

  50. Mudduluru G, Leupold JH, Stroebel P, Allgayer H . PMA up-regulates the transcription of Axl by AP-1 transcription factor binding to TRE sequences via the MAPK cascade in leukaemia cells. Biol Cell 2011; 103: 21–33.

    Article  CAS  Google Scholar 

  51. Demarchi F, Verardo R, Varnum B, Brancolini C, Schneider C . Gas6 anti-apoptotic signaling requires NF-kappa B activation. J Biol Chem 2001; 276: 31738–31744.

    Article  CAS  Google Scholar 

  52. Goruppi S, Chiaruttini C, Ruaro ME, Varnum B, Schneider C . Gas6 induces growth, beta-catenin stabilization, and T-cell factor transcriptional activation in contact-inhibited C57 mammary cells. Mol Cell Biol 2001; 21: 902–915.

    Article  CAS  Google Scholar 

  53. Alciato F, Sainaghi PP, Sola D, Castello L, Avanzi GC . TNF-alpha IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J Leukoc Biol 2010; 87: 869–875.

    Article  CAS  Google Scholar 

  54. Han Z, Chatterjee D, Early J, Pantazis P, Hendrickson EA, Wyche JH . Isolation and characterization of an apoptosis-resistant variant of human leukemia HL-60 cells that has switched expression from Bcl-2 to Bcl-xL. Cancer Res 1996; 56: 1621–1628.

    CAS  PubMed  Google Scholar 

  55. Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA 2006; 103: 5799–5804.

    Article  CAS  Google Scholar 

  56. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 2008; 68: 1905–1915.

    Article  CAS  Google Scholar 

  57. Gjerdrum C, Tiron C, Hoiby T, Stefansson I, Haugen H, Sandal T et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA 2010; 107: 1124–1129.

    Article  CAS  Google Scholar 

  58. Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW . Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene 2008; 27: 4044–4055.

    Article  CAS  Google Scholar 

  59. Nielsen-Preiss SM, Allen MP, Xu M, Linseman DA, Pawlowski JE, Bouchard RJ et al. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells. Endocrinology 2007; 148: 2806–2814.

    Article  CAS  Google Scholar 

  60. Rogers AE, Le JP, Sather S, Pernu BM, Graham DK, Pierce AM et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene 2012; 31: 4171–4181.

    Article  CAS  Google Scholar 

  61. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001; 411: 207–211.

    Article  CAS  Google Scholar 

  62. Wu Y, Singh S, Georgescu MM, Birge RB . A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 2005; 118: 539–553.

    Article  CAS  Google Scholar 

  63. Shrout PE, Fleiss JL . Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979; 86: 420–428.

    Article  CAS  Google Scholar 

  64. Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 2004; 64: 9027–9034.

    Article  CAS  Google Scholar 

  65. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Uniting Against Lung Cancer: Elliot’s Legacy (RMAL), the Lung Cancer Research Foundation (RMAL), the American Cancer Society (RSG-08-291-01-LIB, DKG) and the National Institutes of Health (RO1CA137078, DKG). RMA Linger received a Career Development Award from the University of Colorado Cancer Center SPORE in Lung Cancer (NIH 5P50CA058187). DK Graham is the Damon Runyon-Novartis Clinical Investigator supported (in part) by the Damon Runyon Cancer Research Foundation (CI-39-07). The authors wish to thank Karen Helm, Christine Childs and Lester Acosta in the University of Colorado Cancer Center Flow Cytometry Core for their expert technical assistance, Randall Wong in the University of Colorado Denver Diabetes and Endocrinology Research Center Molecular Biology Core Facility (NIH P30 DK57516) for cell line authentication services, Patricia Lenhart for help optimizing Mer and Axl immunohistochemistry of human tissues, and Storey Wilson and Andrea Abeyta for technical assistance with the Aperio imaging system used to digitize stained tumor microarray slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Graham.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linger, R., Cohen, R., Cummings, C. et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32, 3420–3431 (2013). https://doi.org/10.1038/onc.2012.355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.355

Keywords

This article is cited by

Search

Quick links