Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

ENTPD1/CD39 is a promising therapeutic target in oncology

Abstract

Regulatory T cells (Tregs) are a subpopulation of CD4+ T cells that are essential for maintaining the homeostasis of the immune system, limiting self-reactivity and excessive immune responses against foreign antigens. In cancer, infiltrated Tregs inhibit the effector lymphocytes and create a favorable environment for the growth of the tumor. Although Tregs mediate immunosuppression through multiple, non-redundant, cell-contact dependent and independent mechanisms, a growing body of evidence suggests an important role for the CD39–CD73–adenosine pathway. CD39 ectonucleotidase is the rate-limiting enzyme of a cascade leading to the generation of suppressive adenosine that alters CD4 and CD8 T cell and natural killer cell antitumor activities. Here, we review the recent literature supporting CD39 as a promising therapeutic target in oncology. In vitro and in vivo experiments involving knockout models and surrogate inhibitors of CD39 provide evidence in support of the anticancer activity of CD39 inhibition and predict a favorable safety profile for CD39 inhibitory compounds. In addition, we report the ongoing development of CD39-blocking monoclonal antibodies as potential anticancer drugs. Indeed, CD39 antagonistic antibodies could represent novel therapeutic tools for selectively inhibiting Treg function without depletion, a major limitation of current Treg-targeting strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    CAS  PubMed  Google Scholar 

  2. Griffiths RW, Elkord E, Gilham DE, Ramani V, Clarke N, Stern PL et al. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol Immunother 2007; 56: 1743–1753.

    PubMed  Google Scholar 

  3. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B . Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612.

    PubMed  Google Scholar 

  4. Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005; 11: 8326–8331.

    CAS  PubMed  Google Scholar 

  5. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107: 3940–3949.

    CAS  PubMed  Google Scholar 

  6. Valzasina B, Piconese S, Guiducci C, Colombo MP . Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res 2006; 66: 4488–4495.

    CAS  PubMed  Google Scholar 

  7. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 2007; 109: 2871–2877.

    CAS  PubMed  Google Scholar 

  8. Nishikawa H, Sakaguchi S . Regulatory T cells in tumor immunity. Int J Cancer 2010; 127: 759–767.

    CAS  PubMed  Google Scholar 

  9. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM . Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 2006; 107: 3639–3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng Y, Laouar Y, Li MO, Green EA, Flavell RA . TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 2004; 101: 4572–4577.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004; 173: 6526–6531.

    CAS  PubMed  Google Scholar 

  12. Vignali DA, Collison LW, Workman CJ . How regulatory T cells work. Nat Rev Immunol 2008; 8: 523–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Buanec H, Gougeon ML, Mathian A, Lebon P, Dupont JM, Peltre G et al. IFN-alpha and CD46 stimulation are associated with active lupus and skew natural T regulatory cell differentiation to type 1 regulatory T (Tr1) cells. Proc Natl Acad Sci USA 2011; 108: 18995–19000.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weiner HL . Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001; 182: 207–214.

    CAS  PubMed  Google Scholar 

  15. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK . Type 1 T regulatory cells. Immunol Rev 2001; 182: 68–79.

    CAS  PubMed  Google Scholar 

  16. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE . Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37: 129–138.

    CAS  PubMed  Google Scholar 

  17. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005; 201: 779–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 1998; 338: 161–165.

    CAS  PubMed  Google Scholar 

  19. Oh U, Blevins G, Griffith C, Richert N, Maric D, Lee CR et al. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch Neurol 2009; 66: 471–479.

    PubMed  PubMed Central  Google Scholar 

  20. Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2002; 2: 1.

    PubMed  Google Scholar 

  21. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H et al. Transient T cell depletion causes regression of melanoma metastases. J Transl Med 2008; 6: 12.

    PubMed  PubMed Central  Google Scholar 

  23. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 2008; 112: 610–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Leach DR, Krummel MF, Allison JP . Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    CAS  PubMed  Google Scholar 

  25. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP . Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009; 206: 1717–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tarhini AA . Iqbal F. CTLA-4 blockade: therapeutic potential in cancer treatments. Onco Targets Ther 2010; 3: 15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100: 8372–8377.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Robert C, Thomas L, Bondarenko I, O'Day S, Garbe MDJ . C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364: 2517–2526.

    CAS  PubMed  Google Scholar 

  29. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 2007; 30: 825–830.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribas A, Hauschild A, Kefford R, Punt CJ, Haanen JB, Marmol M et al. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma. J Clin Oncol 2008; 26 (Suppl))abstr LBA9011.

    Google Scholar 

  31. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B . Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 2010; 70: 4850–4858.

    CAS  PubMed  Google Scholar 

  32. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004; 4: 336–344.

    Google Scholar 

  33. Greten TF, Ormandy LA, Fikuart A, Hochst B, Henschen S, Horning M et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother 2010; 33: 211–218.

    CAS  PubMed  Google Scholar 

  34. Colombo MP, Piconese S . Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7: 880–887.

    CAS  PubMed  Google Scholar 

  35. Couper KN, Lanthier PA, Perona-Wright G, Kummer LW, Chen W, Smiley ST et al. Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection. J Immunol 2009; 182: 3985–3994.

    CAS  PubMed  Google Scholar 

  36. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP . Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005; 105: 2845–2851.

    CAS  PubMed  Google Scholar 

  37. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007; 110: 1225–1232.

    CAS  PubMed  Google Scholar 

  38. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204: 1257–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 2010; 139: 1030–1040.

    CAS  PubMed  Google Scholar 

  40. Huang S, Apasov S, Koshiba M, Sitkovsky M . Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 1997; 90: 1600–1610.

    CAS  PubMed  Google Scholar 

  41. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E . Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res 2006; 66: 7758–7765.

    CAS  PubMed  Google Scholar 

  42. Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, Kok A et al. CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog 2011l; 7: e1002110.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Lenzner DE, Jackson EK et al. Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin Cancer Res 2009; 15: 6348–6357.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mandapathil M, Hilldorfer B, Szczepanski MJ, Czystowska M, Szajnik M, Ren J et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 2010; 285: 7176–7186.

    CAS  PubMed  Google Scholar 

  45. Pulte D, Furman RR, Broekman MJ, Drosopoulos JH, Ballard HS, Olson KE et al. CD39 expression on T lymphocytes correlates with severity of disease in patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2011; 11: 367–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pulte ED, Broekman MJ, Olson KE, Drosopoulos JH, Kizer JR, Islam N et al. CD39/NTPDase-1 activity and expression in normal leukocytes. Thromb Res 2007; 121: 309–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T et al. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol 1994; 153: 3574–3583.

    CAS  PubMed  Google Scholar 

  48. Koziak K, Sevigny J, Robson SC, Siegel JB, Kaczmarek E . Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemost 1999; 82: 1538–1544.

    CAS  PubMed  Google Scholar 

  49. Zhou Q, Yan J, Putheti P, Wu Y, Sun X, Toxavidis V et al. Isolated CD39 expression on CD4+ T cells denotes both regulatory and memory populations. Am J Transplant 2009; 9: 2303–2311.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schuler PJ, Harasymczuk M, Schilling B, Lang S, Whiteside TL . Separation of human CD4+CD39+ T cells by magnetic beads reveals two phenotypically and functionally different subsets. J Immunol Methods 2011; 369: 59–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Resta R, Yamashita Y, Thompson LF . Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 1998; 161: 95–109.

    CAS  PubMed  Google Scholar 

  52. Ring S, Enk AH, Mahnke K . Regulatory T cells from IL-10-deficient mice fail to suppress contact hypersensitivity reactions due to lack of adenosine production. J Invest Dermatol 2011; 131: 1494–1502.

    CAS  PubMed  Google Scholar 

  53. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 2006; 103: 13132–13137.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohta A, Madasu M, Kini R, Subramanian M, Goel N, Sitkovsky M . A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol 2009; 183: 5487–5493.

    CAS  PubMed  Google Scholar 

  55. Priebe T, Platsoucas CD, Nelson JA . Adenosine receptors and modulation of natural killer cell activity by purine nucleosides. Cancer Res 1990; 50: 4328–4331.

    CAS  PubMed  Google Scholar 

  56. Williams BA, Manzer A, Blay J, Hoskin DW . Adenosine acts through a novel extracellular receptor to inhibit granule exocytosis by natural killer cells. Biochem Biophys Res Commun 1997; 231: 264–269.

    CAS  PubMed  Google Scholar 

  57. Eppell BA, Newell AM, Brown EJ . Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol 1989; 143: 4141–4145.

    CAS  PubMed  Google Scholar 

  58. Hasko G, Pacher P . Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 2012; 32: 865–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A et al. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 2002; 160: 2231–2244.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ . Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell 2007; 18: 14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112: 1822–1831.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461: 282–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15: 1170–1178.

    CAS  PubMed  Google Scholar 

  64. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334: 1573–1577.

    CAS  PubMed  Google Scholar 

  65. Rapaport E, Fishman RF, Gercel C . Growth inhibition of human tumor cells in soft-agar cultures by treatment with low levels of adenosine 5′-triphosphate. Cancer Res 1983; 43: 4402–4406.

    CAS  PubMed  Google Scholar 

  66. Chahwala SB, Cantley LC . Extracellular ATP induces ion fluxes and inhibits growth of Friend erythroleukemia cells. J Biol Chem 1984; 259: 13717–13722.

    CAS  PubMed  Google Scholar 

  67. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T et al. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia 2011; 13: 206–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. White N, Knight GE, Butler PE, Burnstock G . An in vivo model of melanoma: treatment with ATP. Purinergic Signal 2009; 5: 327–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stagg J, Smyth MJ . Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 2010; 29: 5346–5358.

    CAS  PubMed  Google Scholar 

  70. Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M . P2 × 7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 2006; 177: 2842–2850.

    CAS  PubMed  Google Scholar 

  71. Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha S, Wang JC, Hyrien O et al. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol 2009; 183: 6157–6166.

    CAS  PubMed  Google Scholar 

  72. Kunzli BM, Berberat PO, Giese T, Csizmadia E, Kaczmarek E, Baker C et al. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol 2007; 292: G223–G230.

    CAS  PubMed  Google Scholar 

  73. Hausler SF, Montalban del Barrio I, Strohschein J, Anoop Chandran P, Engel JB, Honig A et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother 2011; 60: 1405–1418.

    PubMed  Google Scholar 

  74. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z . Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 2011; 187: 676–683.

    CAS  PubMed  Google Scholar 

  75. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 1999; 5: 1010–1017.

    CAS  PubMed  Google Scholar 

  76. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW . Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3: 521–530.

    CAS  PubMed  Google Scholar 

  77. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3: 541–547.

    CAS  PubMed  Google Scholar 

  78. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC . CD39 and control of cellular immune responses. Purinergic Signal 2007; 3: 171–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Friedman DJ, Kunzli BM, YI AR, Sevigny J, Berberat PO, Enjyoji K et al. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci USA. 2009; 106: 16788–16793.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005; 29: 26–33.

    Google Scholar 

  81. Jackson SW, Hoshi T, Wu Y, Sun X, Enjyoji K, Cszimadia E et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am J Pathol 2007; 171: 1395–1404.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kunzli BM, Bernlochner MI, Rath S, Kaser S, Csizmadia E, Enjyoji K et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal 2011; 7: 231–241.

    PubMed  PubMed Central  Google Scholar 

  83. Muller CE, Iqbal J, Baqi Y, Zimmermann H, Rollich A, Stephan H . Polyoxometalates--a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 2006; 16: 5943–5947.

    PubMed  Google Scholar 

  84. Wall MJ, Wigmore G, Lopatar J, Frenguelli BG, Dale N . The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 2008; 55: 1251–1258.

    CAS  PubMed  Google Scholar 

  85. Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemela J, Laurila JP, Elima K et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 2011; 41: 1231–1241.

    CAS  PubMed  Google Scholar 

  86. Gouttefangeas C, Mansur I, Bensussan A, Boumsell L . Biochemical analysis and epitope mapping of mAb defining CD39. In: Schlossman SF, Boumsell L, Gilks W, Harlan JM, Kishimoto T et al. Leucocyte Typing V. Oxford University Press, New York, 1995.

    Google Scholar 

  87. Gouttefangeas C, Mansur I, Schmid M, Dastot H, Gelin C, Mahouy G et al. The CD39 molecule defines distinct cytotoxic subsets within alloactivated human CD8-positive cells. Eur J Immunol 1992; 22: 2681–2685.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge our collaborators, Dr Patrice Hémon, INSERM UMR-S 976 and Ms Caroline Laheurte, INSERM U851. This work was supported by an INSERM and ANR grant (Emergence-BIO 2008 awarded to AB) and OSEO (OSEO aide au transfert awarded to NB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Bastid or A Bensussan.

Ethics declarations

Competing interests

Drs Bonnefoy, Bensussan, Alberici and Eliaou are cofounders and shareholders of OREGA Biotech. Dr Bastid is an employee of OREGA Biotech. Dr Cottalorda-Regairaz declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastid, J., Cottalorda-Regairaz, A., Alberici, G. et al. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32, 1743–1751 (2013). https://doi.org/10.1038/onc.2012.269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.269

Keywords

This article is cited by

Search

Quick links