Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition

Abstract

Prostate cancer is one of the leading causes of cancer-related death in men. Despite significant advances in prostate cancer diagnosis and management, the molecular events involved in the transformation of normal prostate cells into cancer cells have not been fully understood. It is generally accepted that prostate cancer derives from the basal compartment while expressing luminal markers. We investigated whether downregulation of the basal protein B-cell translocation gene 2 (BTG2) is implicated in prostate cancer transformation and progression. Here we show that BTG2 loss can shift normal prostate basal cells towards luminal markers expression, a phenotype also accompanied by the appearance of epithelial–mesenchymal transition (EMT) traits. We also show that the overexpression of microRNA (miR)-21 suppresses BTG2 levels and promotes the acquisition of luminal markers and EMT in prostate cells. Furthermore, by using an innovative lentiviral vector able to compete with endogenous mRNA through the overexpression of the 3′-untranslated region of BTG2, we demonstrate that in prostate tumor cells, the levels of luminal and EMT markers can be reduced by derepression of BTG2 from microRNA-mediated control. Finally, we show that the loss of BTG2 expression confers to non-tumorigenic prostate cells ability to grow in an orthotopic murine model, thus demonstrating the central role of BTG2 downregulaton in prostate cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. Gronberg H . Prostate cancer epidemiology. Lancet 2003; 361: 859–864.

    Article  Google Scholar 

  2. Wang Y, Hayward S, Cao M, Thayer K, Cunha G . Cell differentiation lineage in the prostate. Differentiation 2001; 68: 270–279.

    Article  CAS  Google Scholar 

  3. Bonkhoff H, Stein U, Remberger K . The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994; 24: 114–118.

    Article  CAS  Google Scholar 

  4. Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA, Celniker A . Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 1987; 47: 281–286.

    CAS  PubMed  Google Scholar 

  5. Sherwood ER, Berg LA, Mitchell NJ, McNeal JE, Kozlowski JM, Lee C . Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate. J Urol 1990; 143: 167–171.

    Article  CAS  Google Scholar 

  6. Lam JS, Reiter RE . Stem cells in prostate and prostate cancer development. Urol Oncol 2006; 24: 131–140.

    Article  CAS  Google Scholar 

  7. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940–6944.

    CAS  Google Scholar 

  8. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000; 157: 1769–1775.

    Article  CAS  Google Scholar 

  9. Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA 2005; 102: 11355–11360.

    Article  CAS  Google Scholar 

  10. Barbieri CE, Tang LJ, Brown KA, Pietenpol JA . Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 2006; 66: 7589–7597.

    Article  CAS  Google Scholar 

  11. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009; 137: 87–98.

    Article  CAS  Google Scholar 

  12. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  Google Scholar 

  13. Melamed J, Kernizan S, Walden PD . Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell 2002; 34: 28–32.

    Article  CAS  Google Scholar 

  14. Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 1996; 14: 482–486.

    Article  CAS  Google Scholar 

  15. Guardavaccaro D, Corrente G, Covone F, Micheli L, D’Agnano I, Starace G et al. Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 2000; 20: 1797–1815.

    Article  CAS  Google Scholar 

  16. Lim IK . TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol 2006; 132: 417–426.

    Article  CAS  Google Scholar 

  17. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV . A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 2006; 20: 236–252.

    Article  CAS  Google Scholar 

  18. Struckmann K, Schraml P, Simon R, Elmenhorst K, Mirlacher M, Kononen J et al. Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Res 2004; 64: 1632–1638.

    Article  CAS  Google Scholar 

  19. Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res 2006; 66: 7075–7082.

    Article  CAS  Google Scholar 

  20. Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA et al. Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 2001; 22: 1271–1279.

    Article  CAS  Google Scholar 

  21. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  22. Bartel DP, Chen CZ . Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400.

    Article  CAS  Google Scholar 

  23. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  24. Coppola V, De Maria R, Bonci D . MicroRNAs and prostate cancer. Endocr Relat Cancer 2010; 17: F1–17.

    Article  CAS  Google Scholar 

  25. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  26. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  27. Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011; 71: 326–331.

    Article  CAS  Google Scholar 

  28. Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC et al. Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Invest 2011; 29: 318–324.

    Article  CAS  Google Scholar 

  29. Li T, Li D, Sha J, Sun P, Huang Y . MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 2009; 383: 280–285.

    Article  CAS  Google Scholar 

  30. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009; 69: 7165–7169.

    Article  CAS  Google Scholar 

  31. Passeri D, Marcucci A, Rizzo G, Billi M, Panigada M, Leonardi L et al. Btg2 enhances retinoic acid-induced differentiation by modulating histone H4 methylation and acetylation. Mol Cell Biol 2006; 26: 5023–5032.

    Article  CAS  Google Scholar 

  32. Kawamura-Tsuzuku J, Suzuki T, Yoshida Y, Yamamoto T . Nuclear localization of Tob is important for regulation of its antiproliferative activity. Oncogene 2004; 23: 6630–6638.

    Article  CAS  Google Scholar 

  33. Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS . Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 1997; 18: 1215–1223.

    Article  CAS  Google Scholar 

  34. Webber MM, Bello D, Quader S . Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 1997; 30: 58–64.

    Article  CAS  Google Scholar 

  35. Buganim Y, Solomon H, Rais Y, Kistner D, Nachmany I, Brait M et al. p53 Regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 2010; 70: 2274–2284.

    Article  CAS  Google Scholar 

  36. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer cell 2010; 18: 282–293.

    Article  CAS  Google Scholar 

  37. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  Google Scholar 

  38. Liu M, Wu H, Liu T, Li Y, Wang F, Wan H et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res 2009; 19: 828–837.

    Article  CAS  Google Scholar 

  39. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    Article  CAS  Google Scholar 

  40. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH . Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283: 1026–1033.

    Article  CAS  Google Scholar 

  41. Wang Q, Sun Z, Yang HS . Downregulation of tumor suppressor Pdcd4 promotes invasion and activates both beta-catenin/Tcf and AP-1-dependent transcription in colon carcinoma cells. Oncogene 2008; 27: 1527–1535.

    Article  CAS  Google Scholar 

  42. Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Jänne OA et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 2012, 23. doi:10.1038/onc.2011.624(Epub ahead of print).

  43. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008; 19: 3272–3282.

    Article  CAS  Google Scholar 

  44. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T . MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647–658.

    Article  CAS  Google Scholar 

  45. Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res 2004; 64: 8867–8875.

    Article  CAS  Google Scholar 

  46. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  Google Scholar 

  47. Maitland NJ, Frame FM, Polson ES, Lewis JL, Collins AT . Prostate cancer stem cells: do they have a basal or luminal phenotype? Hormones Cancer 2011; 2: 47–61.

    Article  Google Scholar 

  48. Tokar EJ, Ancrile BB, Cunha GR, Webber MM . Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 2005; 73: 463–473.

    Article  CAS  Google Scholar 

  49. Bonkhoff H, Remberger K . Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996; 28: 98–106.

    Article  CAS  Google Scholar 

  50. Hu XD, Meng QH, Xu JY, Jiao Y, Ge CM, Jacob A et al. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity. Biochem Biophys Res Commun 2011; 404: 903–909.

    Article  CAS  Google Scholar 

  51. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011; 9: 997–1007.

    Article  CAS  Google Scholar 

  52. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A et al. ‘Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 2003; 10: 630–636.

    Article  CAS  Google Scholar 

  53. Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A et al. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 2006; 26: 4746–4757.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Tirone and L. Leonardi for providing non-commercial His-tagged anti-BTG2 antibody, S. Soddu for kindly providing pSUPER-p53plasmid for p53 interference, T. Merlino for manuscript editing, and G. Loreto for graphical assistance. This work was supported by the Italian Health Ministry with ‘Under forty researchers 2007’ and Italy-USA microRNA program to DB, and by the Italian Association for Cancer Research (AIRC) and ‘Fondazione Roma’ support to RDM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R De Maria or D Bonci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppola, V., Musumeci, M., Patrizii, M. et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene 32, 1843–1853 (2013). https://doi.org/10.1038/onc.2012.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.194

Keywords

This article is cited by

Search

Quick links