Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The human Lgl polarity gene, Hugl-2, induces MET and suppresses Snail tumorigenesis

Abstract

Lethal giant larvae proteins have key roles in regulating polarity in a variety of cell types and function as tumour suppressors. A transcriptional programme initiated by aberrant Snail expression transforms epithelial cells to potentially aggressive cancer cells. Although progress in defining the molecular determinants of this programme has been made, we have little knowledge as to how the Snail-induced phenotype can be suppressed. In our studies we identified the human lethal giant larvae homologue 2, Hugl-2, (Llgl2/Lgl2) polarity gene as downregulated by Snail. Snail binds E-boxes in the Hugl-2 promoter and represses Hugl-2 expression, whereas removal of the E-boxes releases Hugl-2 from Snail repression. We demonstrate that inducing Hugl-2 in cells with constitutive Snail expression reverses the phenotype including changes in morphology, motility, tumour growth and dissemination in vivo, and expression of epithelial markers. Hugl-2 expression reduced the nuclear localization of Snail and thus binding of Snail to its target promoters. Our results placing Hugl-2 within the Snail network as well as its ability to suppress Snail carcinogenesis identifies Hugl-2 as a target molecule driving cascades, which may have preventative and therapeutic promise to minimize cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gateff E, Schneiderman HA . Developmental studies of a new mutant of Drosophila melanogaster: Lethal malignant brain tumor (l(2)gl 4). Am Zool 1967; 7: 760.

    Google Scholar 

  2. Mechler BM, McGinnis W, Gehring WJ . Molecular cloning of lethal(2)giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J 1985; 4: 1551–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albertson R, Doe CQ . Dig, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 2003; 5: 166–170.

    Article  CAS  PubMed  Google Scholar 

  4. Betschinger J, Mechtler K, Knoblich JA . The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 2003; 422: 326–330.

    Article  CAS  PubMed  Google Scholar 

  5. Bilder D . Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 2004; 18: 1909–1925.

    Article  CAS  PubMed  Google Scholar 

  6. Froldi F, Ziosi M, Tomba G, Parisi F, Garoia F, Pession A et al. Drosophila lethal giant larvae neoplastic mutant as a genetic tool for cancer modeling. Curr Genomics 2008; 9: 147–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee M, Vasioukhin V . Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 2008; 121: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  8. Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR et al. The human protein Hugl-1 substitutes for Drosophila Lethal giant larvae tumour suppressor function in vivo. Oncogene 2004; 23: 8688–8694.

    Article  CAS  PubMed  Google Scholar 

  9. Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 2006; 25: 103–110.

    Article  CAS  PubMed  Google Scholar 

  10. Grifoni D, Garoia F, Bellosta P, Parisi F, De Biase D, Collina G et al. aPKCzeta cortical loading is associated with Lgl cytoplasmic release and tumor growth in Drosophila and human epithelia. Oncogene 2007; 26: 5960–5965.

    Article  CAS  PubMed  Google Scholar 

  11. Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC et al. Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 2005; 24: 3100–3109.

    Article  CAS  PubMed  Google Scholar 

  12. Lisovsky M, Dresser K, Baker S, Fisher A, Woda B, Banner B et al. Cell polarity protein Lgl2 is lost or aberrantly localized in gastric dysplasia and adenocarcinoma: an immunohistochemical study. Mod Pathol 2009; 22: 977–984.

    Article  CAS  PubMed  Google Scholar 

  13. Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Nagasaka K et al. Loss of Hugl-1 expression associates with lymph node metastasis in endometrial cancer. Oncol Res 2007; 16: 431–435.

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Feng X, Man X, Yang G, Tang L, Du D et al. Aberrant splicing of Hugl-1 is associated with hepatocellular carcinoma progression. Clin Cancer Res 2009; 15: 3287–3296.

    Article  CAS  PubMed  Google Scholar 

  15. Lisovsky M, Dresser K, Woda B, Mino-Kenudson M . Immunohistochemistry for cell polarity protein lethal giant larvae 2 differentiates pancreatic intraepithelial neoplasia-3 and ductal adenocarcinoma of the pancreas from lower-grad pancreatic intraepithelial neoplasias. Hum Pathol 2010; 41: 902–909.

    Article  CAS  PubMed  Google Scholar 

  16. Singh A, Greninger P, Rhodes D, Koopmean L, Violette S, Bardeesy N et al. A gene expression signature associated with ‘K-Ras addiction’. Cancer Cell 2009; 15: 489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahiya N, Sherman-Baust CA, Wang T, Davidson B, Shih L, Zhang Y et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS ONE 2008; 3: 1–11.

    Article  Google Scholar 

  18. Gaspar C, Cardoso J, Franken P, Molenaar L, Morreau H, Moslein G et al. Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. Am J Pathol 2008; 172: 1363–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harada T, Chelala C, Crnogorac-Jurcevic T, Lemoine NR . Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology 2009; 9: 13–24.

    Article  CAS  PubMed  Google Scholar 

  20. Hensen EF, De Herdt MJ, Goeman JJ, Oosting J, Smit VT, Cornelisse CJ et al. Gene-expression of metastasized versus non-metastasized primary head and neck squamous cell carcinomas: a pathway-based analysis. BMC Cancer 2008; 8: 168.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. Gene expression predictors of breast cancer outcomes. Lancet 2003; 361: 1590–1596.

    Article  CAS  PubMed  Google Scholar 

  22. Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U et al. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 2007; 85: 293–304.

    Article  CAS  PubMed  Google Scholar 

  23. Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N et al. Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002; 169: 5–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ohali A, Avigad S, Zaizov R, Ophir R, Horn-Saban S, Cohen IJ et al. Prediction of high risk Ewing's sarcoma by gene expression profiling. Oncogene 2004; 23: 8997–9006.

    Article  CAS  PubMed  Google Scholar 

  25. Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 2005; 37: 182–186.

    Article  CAS  PubMed  Google Scholar 

  26. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al. A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15: 489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skotheim RI, Monni O, Mousses S, Fossa SD, Kallioniemi OP, Lothe RA et al. New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res 2002; 62: 2359–2364.

    CAS  PubMed  Google Scholar 

  28. Taxman DJ, MacKeigan JP, Clements C, Bergstralh DT, Ting JP . Transcriptional profiling of targets for combination therapy of lung carcinoma with paclitaxel and mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Cancer Res 2003; 63: 5095–5104.

    CAS  PubMed  Google Scholar 

  29. Tomioka H, Morita K, Hasegawa S, Omura K . Gene expression analysis by cDNA microarray in oral squamous cell carcinoma. J Oral Pathol Med 2006; 35: 206–211.

    Article  CAS  PubMed  Google Scholar 

  30. Vekony H, Ylstra B, Wilting SM, Meijer GA, van de Wiel MA, Leemans CR et al. DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma. Clin Cancer Res 2007; 13: 3133–3139.

    Article  CAS  PubMed  Google Scholar 

  31. Zavadil J . Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 2001; 98: 6686–6691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gavert N, Ben-Ze'ev A . Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 2008; 14: 199–209.

    Article  CAS  PubMed  Google Scholar 

  34. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  35. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 2009; 69: 5820–5828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kajita M, McClinic KN, Wade PA . Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pena C, Garcia JM, Larriba MJ, Barderas R, Gomez I, Herrera M et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene 2009; 28: 4375–4385.

    Article  CAS  PubMed  Google Scholar 

  38. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  39. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  40. Nieto MA . The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  41. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  42. Aigner K, Dampier B, Descovich L, Mikula M . Sultan A, Schreiber M, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K . Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research 2008; 68: 537–544.

    Article  CAS  PubMed  Google Scholar 

  44. Moreno-Bueno G, Portillo F, Cano A . Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008; 27: 6958–6969.

    Article  CAS  PubMed  Google Scholar 

  45. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21: 3241–3246.

    Article  CAS  PubMed  Google Scholar 

  46. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 2005; 8: 197–209.

    Article  CAS  PubMed  Google Scholar 

  47. Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 2005; 92: 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V . Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 2004; 18: 559–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreno-Bueno G, Salvador F, Martin A, Floristan A, Cuevas EP, Santos V et al. Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol Med 2011; 3: 1–17.

    Article  Google Scholar 

  50. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009; 9: 862–873.

    Article  CAS  PubMed  Google Scholar 

  51. Aichberger KJ, Gleixner KV, Mirkina I, Cerny-Reiterer S, Peter B, Ferenc V et al. Identification of proapoptotic Bim as a tumour suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs. Blood 2009; 114: 5342–5351.

    Article  CAS  PubMed  Google Scholar 

  52. Hajra KM, Ji X, Fearon ER . Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 1999; 18: 7274–7279.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Garcia de Herreros for allowing us to use the Snail-HA expression plasmid and PH Krammer for providing anti-Apo-1 antibody. MDA-MB-231 cells were a gift of Thomas Efferth. We kindly thank Anil K Rustgi and Eric R Fearon for providing CyclinD1- and E-cadherin-luciferase constructs, respectively. The expert technical assistance of Mirjam Weisser, Daniela Gottfried, Henry Alizor, Shenchu Jin and Henning Janssen is gratefully acknowledged. Special thanks to the laser-scanning microscopy Core Facility of the Forschungszentrum Immunolgie Mainz. This work was supported by grants from the MAIFOR program to DS and SS. DS and SS should be considered as equal senior authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Strand.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashyap, A., Zimmerman, T., Ergül, N. et al. The human Lgl polarity gene, Hugl-2, induces MET and suppresses Snail tumorigenesis. Oncogene 32, 1396–1407 (2013). https://doi.org/10.1038/onc.2012.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.162

Keywords

This article is cited by

Search

Quick links