Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase

Abstract

Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumors in adults. Uncontrolled proliferation and abnormal cell migration are two prominent spatially and temporally disassociated characteristics of GBMs. In this study, we investigated the role of the receptor tyrosine kinase EphB2 in controlling the proliferation/migration dichotomy of GBM. We studied EphB2 gain of function and loss of function in glioblastoma-derived stem-like neurospheres, whose in vivo growth pattern closely replicates human GBM. EphB2 expression stimulated GBM neurosphere cell migration and invasion, and inhibited neurosphere cell proliferation in vitro. In parallel, EphB2 silencing increased tumor cell proliferation and decreased tumor cell migration. EphB2 was found to increase tumor cell invasion in vivo using an internally controlled dual-fluorescent xenograft model. Xenografts derived from EphB2-overexpressing GBM neurospheres also showed decreased cellular proliferation. The non-receptor tyrosine kinase focal adhesion kinase (FAK) was found to be co-associated with and highly activated by EphB2 expression, and FAK activation facilitated focal adhesion formation, cytoskeleton structure change and cell migration in EphB2-expressing GBM neurosphere cells. Taken together, our findings indicate that EphB2 has pro-invasive and anti-proliferative actions in GBM stem-like neurospheres mediated, in part, by interactions between EphB2 receptors and FAK. These novel findings suggest that tumor cell invasion can be therapeutically targeted by inhibiting EphB2 signaling, and that optimal antitumor responses to EphB2 targeting may require concurrent use of anti-proliferative agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Quick A, Patel D, Hadziahmetovic M, Chakravarti A, Mehta M . Current therapeutic paradigms in glioblastoma. Rev Recent Clin Trials 2010; 5: 14–27.

    Article  CAS  Google Scholar 

  2. Giese A, Bjerkvig R, Berens ME, Westphal M . Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 2003; 21: 1624–1636.

    Article  CAS  Google Scholar 

  3. Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME . Dichotomy of astrocytoma migration and proliferation. Int J Cancer 1996; 67: 275–282.

    Article  CAS  Google Scholar 

  4. Rahman R, Smith S, Rahman C, Grundy R . Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma. J Oncol 2010; 2010: 251231.

    Article  Google Scholar 

  5. Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 2007; 85: 133–148.

    Article  Google Scholar 

  6. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391–403.

    Article  CAS  Google Scholar 

  7. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 2011; 30: 3454–3467.

    Article  CAS  Google Scholar 

  8. Pasquale EB . Eph–ephrin bidirectional signaling in physiology and disease. Cell 2008; 133: 38–52.

    Article  CAS  Google Scholar 

  9. Pasquale EB . Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010; 10: 165–180.

    Article  CAS  Google Scholar 

  10. Arvanitis D, Davy A . Eph/ephrin signaling: networks. Genes Dev 2008; 22: 416–429.

    Article  CAS  Google Scholar 

  11. Noren NK, Pasquale EB . Paradoxes of the EphB4 receptor in cancer. Cancer Res 2007; 67: 3994–3997.

    Article  CAS  Google Scholar 

  12. Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435: 1126–1130.

    Article  CAS  Google Scholar 

  13. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A . Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 2000; 3: 1091–1097.

    Article  CAS  Google Scholar 

  14. Cortina C, Palomo-Ponce S, Iglesias M, Fernandez-Masip JL, Vivancos A, Whissell G et al. EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 2007; 39: 1376–1383.

    Article  CAS  Google Scholar 

  15. Noren NK, Foos G, Hauser CA, Pasquale EB . The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat Cell Biol 2006; 8: 815–825.

    Article  CAS  Google Scholar 

  16. Chiu ST, Chang KJ, Ting CH, Shen HC, Li H, Hsieh FJ . Overexpression of EphB3 enhances cell–cell contacts and suppresses tumor growth in HT-29 human colon cancer cells. Carcinogenesis 2009; 30: 1475–1486.

    Article  CAS  Google Scholar 

  17. Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express ephrinA1. Cancer Gene Ther 2004; 11: 757–766.

    Article  CAS  Google Scholar 

  18. Fox BP, Kandpal RP . Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 2004; 318: 882–892.

    Article  CAS  Google Scholar 

  19. Fukai J, Yokote H, Yamanaka R, Arao T, Nishio K, Itakura T . EphA4 promotes cell proliferation and migration through a novel EphA4–FGFR1 signaling pathway in the human glioma U251 cell line. Mol Cancer Ther 2008; 7: 2768–2778.

    Article  CAS  Google Scholar 

  20. Kuijper S, Turner CJ, Adams RH . Regulation of angiogenesis by Eph–ephrin interactions. Trends Cardiovasc Med 2007; 17: 145–151.

    Article  CAS  Google Scholar 

  21. Surawska H, Ma PC, Salgia R . The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 2004; 15: 419–433.

    Article  CAS  Google Scholar 

  22. Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 2008; 118: 64–78.

    Article  CAS  Google Scholar 

  23. Larsen AB, Pedersen MW, Stockhausen MT, Grandal MV, van Deurs B, Poulsen HS . Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res 2007; 5: 283–293.

    Article  CAS  Google Scholar 

  24. Vaught D, Chen J, Brantley-Sieders DM . Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell 2009; 20: 2572–2581.

    Article  CAS  Google Scholar 

  25. Lugli A, Spichtin H, Maurer R, Mirlacher M, Kiefer J, Huusko P et al. EphB2 expression across 138 human tumor types in a tissue microarray: high levels of expression in gastrointestinal cancers. Clin Cancer Res 2005; 11: 6450–6458.

    Article  CAS  Google Scholar 

  26. Alazzouzi H, Davalos V, Kokko A, Domingo E, Woerner SM, Wilson AJ et al. Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 2005; 65: 10170–10173.

    Article  CAS  Google Scholar 

  27. Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 2004; 36: 979–983.

    Article  CAS  Google Scholar 

  28. Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO . EphrinB1 controls cell–cell junctions through the Par polarity complex. Nat Cell Biol 2008; 10: 979–986.

    Article  CAS  Google Scholar 

  29. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2533.

    Article  CAS  Google Scholar 

  30. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28: 5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J et al. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 2009; 27: 1473–1486.

    Article  CAS  Google Scholar 

  32. Ying M, Sang Y, Li Y, Guerrero-Cazares H, Quinones-Hinojosa A, Vescovi AL et al. KLF9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells 2010; 29: 20–31.

    Article  Google Scholar 

  33. Nakada M, Niska JA, Miyamori H, McDonough WS, Wu J, Sato H et al. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 2004; 64: 3179–3185.

    Article  CAS  Google Scholar 

  34. Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 2009; 69: 3736–3745.

    Article  CAS  Google Scholar 

  35. Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 2009; 16: 9–20.

    Article  CAS  Google Scholar 

  36. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 2009; 4: 568–580.

    Article  CAS  Google Scholar 

  37. Heese O, Disko A, Zirkel D, Westphal M, Lamszus K . Neural stem cell migration toward gliomas in vitro. Neuro Oncol 2005; 7: 476–484.

    Article  CAS  Google Scholar 

  38. Genander M, Halford MM, Xu NJ, Eriksson M, Yu Z, Qiu Z et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 2009; 139: 679–692.

    Article  CAS  Google Scholar 

  39. Holmberg J, Genander M, Halford MM, Anneren C, Sondell M, Chumley MJ et al. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 2006; 125: 1151–1163.

    Article  CAS  Google Scholar 

  40. Sarkaria JN, Carlson BL, Schroeder MA, Grogan P, Brown PD, Giannini C et al. Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 2006; 12: 2264–2271.

    Article  CAS  Google Scholar 

  41. Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC, Chen J . EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci 2004; 117: 2037–2049.

    Article  CAS  Google Scholar 

  42. Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 2007; 282: 14845–14852.

    Article  CAS  Google Scholar 

  43. Golubovskaya VM, Nyberg C, Zheng M, Kweh F, Magis A, Ostrov D et al. A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J Med Chem 2008; 51: 7405–7416.

    Article  CAS  Google Scholar 

  44. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 2000; 6: 909–919.

    Article  CAS  Google Scholar 

  45. Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME . EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol 2005; 167: 565–576.

    Article  CAS  Google Scholar 

  46. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  Google Scholar 

  47. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 2005; 7: 7–16.

    Article  CAS  Google Scholar 

  48. Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL et al. The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 2010; 126: 1155–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K . Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 2009; 7: 157–167.

    Article  CAS  Google Scholar 

  50. Reznik TE, Sang Y, Ma Y, Abounader R, Rosen EM, Xia S et al. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res 2008; 6: 139–150.

    Article  CAS  Google Scholar 

  51. Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E et al. Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am J Pathol 2009; 174: 1492–1503.

    Article  CAS  Google Scholar 

  52. Chatzizacharias NA, Kouraklis GP, Theocharis SE . Clinical significance of FAK expression in human neoplasia. Histol Histopathol 2008; 23: 629–650.

    CAS  PubMed  Google Scholar 

  53. Cox BD, Natarajan M, Stettner MR, Gladson CL . New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem 2006; 99: 35–52.

    Article  Google Scholar 

  54. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY . Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–799.

    Article  CAS  Google Scholar 

  55. van Nimwegen MJ, van de Water B . Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 2007; 73: 597–609.

    Article  CAS  Google Scholar 

  56. Shi Y, Pontrello CG, DeFea KA, Reichardt LF, Ethell IM . Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci 2009; 29: 8129–8142.

    Article  CAS  Google Scholar 

  57. Luo M, Guan JL . Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 2010; 289: 127–139.

    Article  CAS  Google Scholar 

  58. Schwock J, Dhani N, Hedley DW . Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 2010; 14: 77–94.

    Article  CAS  Google Scholar 

  59. Zhao J, Guan JL . Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 2009; 28: 35–49.

    Article  Google Scholar 

  60. Garber K . Of Ephs and ephrins: companies target guidance molecules in cancer. J Natl Cancer Inst 2010; 102: 1692–1694.

    Article  Google Scholar 

  61. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

  62. Goodwin CR, Lal B, Zhou X, Ho S, Xia S, Taeger A et al. Cyr61 mediates hepatocyte growth factor-dependent tumor cell growth, migration, and Akt activation. Cancer Res 2010; 70: 2932–2941.

    Article  CAS  Google Scholar 

  63. Lal B, Xia S, Abounader R, Laterra J . Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 2005; 11: 4479–4486.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Maryland Stem Cell Research Fund (MSCRFE) 2009-0126-00 (SX), NIH NS43987 (JL) and the James S McDonnell Foundation (JL). We thank Dr Hugo Guerrero-Cázares for technical advice and Miss Mir Shanaz Hossain for technical assistance. We also thank Mr Hao Zhang from Johns Hopkins School of Public Health for assistance with flow cytometric analysis.

Author contributions: SDW: Collection and assembly of data, data analysis and interpretation, final approval; PR, BL, J-PR, YL, CRG: Collection and assembly of data, final approval; JL: Financial support, administrative support, data analysis and interpretation, manuscript writing, final approval. SX: Conception and design, financial support, administrative support, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Xia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Rath, P., Lal, B. et al. EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31, 5132–5143 (2012). https://doi.org/10.1038/onc.2012.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.16

Keywords

This article is cited by

Search

Quick links