Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells

Abstract

The type III TGF-β receptor (TβRIII) is a ubiquitous co-receptor for TGF-β superfamily ligands with roles in suppressing cancer progression, in part through suppressing cell motility. Here we demonstrate that TβRIII promotes epithelial cell adhesion to fibronectin in a β-arrestin2 dependent and TGF-β/BMP independent manner by complexing with active integrin α5β1, and mediating β-arrestin2-dependent α5β1 internalization and trafficking to nascent focal adhesions. TβRIII-mediated integrin α5β1 trafficking regulates cell adhesion and fibronectin fibrillogenesis in epithelial cells, as well as α5 localization in breast cancer patients. We further demonstrate that increased TβRIII expression correlates with increased α5 localization at sites of cell-cell adhesion in breast cancer patients, while higher TβRIII expression is a strong predictor of overall survival in breast cancer patients. These data support a novel, clinically relevant role for TβRIII in regulating integrin α5 localization, reveal a novel crosstalk mechanism between the integrin and TGF-β superfamily signaling pathways and identify β-arrestin2 as a regulator of α5β1 trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Edelman GM, Crossin KL . Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem 1991; 60: 155–190.

    Article  CAS  PubMed  Google Scholar 

  2. Ruoslahti E . Integrins. J Clin Invest 1991; 87: 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loftus JC, Smith JW, Ginsberg MH . Integrin-mediated cell adhesion: the extracellular face. J Biol Chem 1994; 269: 25235–25238.

    CAS  PubMed  Google Scholar 

  4. Ruoslahti E, Yamaguchi Y . Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867–869.

    Article  CAS  PubMed  Google Scholar 

  5. Burridge K, Chrzanowska-Wodnicka M . Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463–518.

    Article  CAS  PubMed  Google Scholar 

  6. Morgan MR, Byron A, Humphries MJ, Bass MD . Giving off mixed signals--distinct functions of alpha5beta1 and alphavbeta3 integrins in regulating cell behaviour. IUBMB Life 2009; 61: 731–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bretscher MS . Cells can use their transferrin receptors for locomotion. Embo J 1992; 11: 383–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pellinen T, Ivaska J . Integrin traffic. J Cell Sci 2006; 119(Part 18): 3723–3731.

    Article  CAS  PubMed  Google Scholar 

  9. Bretscher MS . Moving membrane up to the front of migrating cells. Cell 1996; 85: 465–467.

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Casillas F, Wrana JL, Massague J . Betaglycan presents ligand to the TGF beta signaling receptor. Cell 1993; 73: 1435–1444.

    Article  CAS  PubMed  Google Scholar 

  11. Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC . Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 2008; 283: 7628–7637.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 2000; 404: 411–414.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Casillas F, Payne HM, Andres JL, Massague J . Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994; 124: 557–568.

    Article  CAS  PubMed  Google Scholar 

  14. Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D et al. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol Cell Biol 2003; 23: 4371–4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bilandzic M, Stenvers KL . Betaglycan: A multifunctional accessory. Mol Cell Endocrinol 2011, Apr: 28.

  16. Blobe GC, Schiemann WP, Pepin MC, Beauchemin M, Moustakas A, Lodish HF et al. Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling. J Biol Chem 2001; 276: 24627–24637.

    Article  CAS  PubMed  Google Scholar 

  17. Blobe GC, Liu X, Fang SJ, How T, Lodish HF . A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem 2001; 276: 39608–39617.

    Article  CAS  PubMed  Google Scholar 

  18. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP et al. Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 2003; 301: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  19. Lee NY, Kirkbride KC, Sheu RD, Blobe GC . The transforming growth factor-beta type III receptor mediates distinct subcellular trafficking and downstream signaling of activin-like kinase (ALK)3 and ALK6 receptors. Mol Biol Cell 2009; 20: 4362–4370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N et al. The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 2007; 117: 206–217.

    Article  CAS  PubMed  Google Scholar 

  21. Finger EC, Turley RS, Dong M, How T, Fields TA, Blobe GC . TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 2008; 29: 528–535.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon KJ, Dong M, Chislock EM, Fields TA, Blobe GC . Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 2008; 29: 252–262.

    Article  CAS  PubMed  Google Scholar 

  23. Hempel N, How T, Dong M, Murphy SK, Fields TA, Blobe GC . Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Res 2007; 67: 5231–5238.

    Article  CAS  PubMed  Google Scholar 

  24. Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC . The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Research. (Research Support, N.I.H., Extramural Research Support, Non-US Gov’t) 2007; 67: 1090–1098.

    CAS  Google Scholar 

  25. Bilandzic M, Chu S, Farnworth PG, Harrison C, Nicholls P, Wang Y et al. Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells. Mol Endocrinol 2009; 23: 539–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mythreye K, Blobe GC . The type III TGF-{beta} receptor regulates epithelial and cancer cell migration through {beta}-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 2009; 106: 8221–8226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White DP, Caswell PT, Norman JC . alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 2007; 177: 515–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger B, Spatz JP, Bershadsky AD . Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10: 21–33.

    Article  CAS  PubMed  Google Scholar 

  29. Parsons JT, Schaller MD, Hildebrand J, Leu TH, Richardson A, Otey C . Focal adhesion kinase: structure and signalling. J Cell Sci Suppl 1994; 18: 109–113.

    Article  CAS  PubMed  Google Scholar 

  30. Hanks SK, Calalb MB, Harper MC, Patel SK . Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci USA. 1992; 89: 8487–8491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT . Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 1994; 14: 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT . pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 1992; 89: 5192–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L . Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. Embo J 2004; 23: 4792–4801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu F, Ventura F, Doody J, Massague J . Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 1995; 15: 3479–3486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akiyama SK, Yamada SS, Chen WT, Yamada KM . Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 1989; 109: 863–875.

    Article  CAS  PubMed  Google Scholar 

  36. Kuwada SK, Li X . Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell 2000; 11: 2485–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE et al. A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci 2005; 118(Part 2): 291–300.

    Article  CAS  PubMed  Google Scholar 

  38. Ginsberg MH, Partridge A, Shattil SJ . Integrin regulation. Curr Opin Cell Biol 2005; 17: 509–516.

    Article  CAS  PubMed  Google Scholar 

  39. Woods AJ, White DP, Caswell PT, Norman JC . PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. Embo J 2004; 23: 2531–2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P, Norman JC . Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. Mol Cell Biol 2004; 24: 1505–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zerial M, McBride H . Rab proteins as membrane organizers. Nature reviews Molecular Cell Biology. (Review) 2001; 2: 107–117.

    Article  CAS  Google Scholar 

  42. Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ . beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 2001; 98: 1601–1606.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ et al. ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. Journal of Cell Science. (Research Support, US Gov’t, Non-P.H.S.) 2010; 123(Part 8): 1373–1382.

    CAS  Google Scholar 

  44. Molteni R, Crespo CL, Feigelson S, Moser C, Fabbri M, Grabovsky V et al. Beta-arrestin 2 is required for the induction and strengthening of integrin-mediated leukocyte adhesion during CXCR2-driven extravasation. Blood. (Research Support, Non-U.S. Gov’t) 2009; 114: 1073–1082.

    CAS  Google Scholar 

  45. DeFea KA . Stop that cell! Beta-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 2007; 69: 535–560.

    Article  CAS  PubMed  Google Scholar 

  46. Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA . Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 2002; 22: 7731–7743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL . Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem 2004; 279: 9565–9576.

    Article  CAS  PubMed  Google Scholar 

  48. Mythreye K, Blobe GC . Proteoglycan signaling co-receptors: Roles in cell adhesion, migration and invasion. Cell Signal 2009, May: 8.

  49. Nam JM, Onodera Y, Bissell MJ, Park CC . Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Research. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, US Gov't, Non-P.H.S.) 2010; 70: 5238–5248.

    CAS  Google Scholar 

  50. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10 A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  51. You HJ, Bruinsma MW, How T, Ostrander JH, Blobe GC . The type III TGF-beta receptor signals through both Smad3 and the p38 MAP kinase pathways to contribute to inhibition of cell proliferation. Carcinogenesis. (Research Support, N.I.H., Extramural Research Support, Non-US Gov’t) 2007; 28: 2491–2500.

    CAS  Google Scholar 

  52. Robertson D, Savage K, Reis-Filho JS, Isacke CM . Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol. (Research Support, Non-US Gov’t) 2008; 9: 13.

    Google Scholar 

  53. Roberts M, Barry S, Woods A, van der Sluijs P, Norman J . PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 2001; 11: 1392–1402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Sue Craig and Martin Humphries for generously providing us with SNAKA51, L. Attisano for BMPRII construct, Tam How and Alisha Holtzhausen for technical help in generation of the ratTβRIII-T841A plasmid and plasmid purifications respectively, Duke University Light Microscopy facility for help in training individuals with the use of the TIRFM and confocal microscopes. This work was supported in part by NIH Grants R01-CA135006 and R01-CA136786 (GCB), Komen for the Cure Grants KG090154 and SAC100002 (GCB) and Department of Defense grant W81 XWH-09-1-0265 (KM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Blobe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mythreye, K., Knelson, E., Gatza, C. et al. TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells. Oncogene 32, 1416–1427 (2013). https://doi.org/10.1038/onc.2012.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.157

Keywords

This article is cited by

Search

Quick links