Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thiazolide-induced apoptosis in colorectal cancer cells is mediated via the Jun kinase–Bim axis and reveals glutathione-S-transferase P1 as Achilles’ heel

Abstract

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles’ heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD et al. (1999). Regulation of JNK signaling by GSTp. EMBO J 18: 1321–1334.

    Article  CAS  Google Scholar 

  • Badmann A, Keough A, Kaufmann T, Bouillet P, Brunner T, Corazza N . (2011). Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage. Cell Death Dis 2: e171.

    Article  CAS  Google Scholar 

  • Balendiran GK, Dabur R, Fraser D . (2004). The role of glutathione in cancer. Cell biochem func 22: 343–352.

    Article  CAS  Google Scholar 

  • Chen C, Edelstein LC, Gelinas C . (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20: 2687–2695.

    Article  Google Scholar 

  • Chen YR, Tan TH . (2000). The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 16: 651–662.

    CAS  Google Scholar 

  • Corazza N, Jakob S, Schaer C, Frese S, Keogh A, Stroka D et al. (2006). TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Invest 116: 2493–2499.

    Article  CAS  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  Google Scholar 

  • Dhanasekaran DN, Reddy EP . (2008). JNK signaling in apoptosis. Oncogene 27: 6245–6251.

    Article  CAS  Google Scholar 

  • Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ et al. (2003). Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278: 22243–22249.

    Article  CAS  Google Scholar 

  • Fox LM, Saravolatz LD . (2005). Nitazoxanide: a new thiazolide antiparasitic agent. Clin Infect Dis 40: 1173–1180.

    Article  CAS  Google Scholar 

  • Garrett CR, Eng C . (2011). Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther 11: 937–949.

    Article  CAS  Google Scholar 

  • Goto S, Iida T, Cho S, Oka M, Kohno S, Kondo T . (1999). Overexpression of glutathione S-transferase pi enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res 31: 549–558.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Ishikawa T, Ali-Osman F . (1993). Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268: 20116–20125.

    CAS  PubMed  Google Scholar 

  • Ishimoto TM, Ali-Osman F . (2002). Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenetics 12: 543–553.

    Article  CAS  Google Scholar 

  • Jakob S, Corazza N, Diamantis E, Kappeler A, Brunner T . (2008). Detection of apoptosis in vivo using antibodies against caspase-induced neo-epitopes. Methods 44: 255–261.

    Article  CAS  Google Scholar 

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. (2005). Cancer statistics, 2005. CA Cancer J Clin 55: 10–30.

    Article  Google Scholar 

  • Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR . (1998). DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1: 543–551.

    Article  CAS  Google Scholar 

  • Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S et al. (2009). Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30: 56–66.

    Article  CAS  Google Scholar 

  • Kuo CT, Chen BC, Yu CC, Weng CM, Hsu MJ, Chen CC et al. (2009). Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells. J Biomed Sci 16: 43.

    Article  Google Scholar 

  • Lei K, Davis RJ . (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100: 2432–2437.

    Article  CAS  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J . (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

    Article  CAS  Google Scholar 

  • McIlwain CC, Townsend DM, Tew KD . (2006). Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25: 1639–1648.

    Article  CAS  Google Scholar 

  • Meyerhardt JA, Mayer RJ . (2005). Systemic therapy for colorectal cancer. N Engl J Med 352: 476–487.

    Article  CAS  Google Scholar 

  • Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T . (2007). Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology 148: 1445–1453.

    Article  CAS  Google Scholar 

  • Muller J, Naguleswaran A, Muller N, Hemphill A . (2008a). Neospora caninum: functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides. Exp Parasitol 118: 80–88.

    Article  CAS  Google Scholar 

  • Muller J, Ruhle G, Muller N, Rossignol JF, Hemphill A . (2006). In vitro effects of thiazolides on Giardia lamblia WB clone C6 cultured axenically and in coculture with Caco2 cells. Antimicrob Agents Chemother 50: 162–170.

    Article  CAS  Google Scholar 

  • Muller J, Sidler D, Nachbur U, Wastling J, Brunner T, Hemphill A . (2008b). Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int J Cancer 123: 1797–1806.

    Article  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139: 271–279.

    Article  CAS  Google Scholar 

  • O'Dwyer PJ, LaCreta F, Nash S, Tinsley PW, Schilder R, Clapper ML et al. (1991). Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res 51: 6059–6065.

    CAS  PubMed  Google Scholar 

  • Ozoren N, El-Deiry WS . (2002). Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4: 551–557.

    Article  Google Scholar 

  • Petrini M, Conte A, Caracciolo F, Sabbatini A, Grassi B, Ronca G . (1993). Reversing of chlorambucil resistance by ethacrynic acid in a B-CLL patient. Br J Haematol 85: 409–410.

    Article  CAS  Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B et al. (2003). JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38: 899–914.

    Article  CAS  Google Scholar 

  • Ritchie KJ, Walsh S, Sansom OJ, Henderson CJ, Wolf CR . (2009). Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A 106: 20859–20864.

    Article  CAS  Google Scholar 

  • Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L . (2009). Glutathione transferases as targets for cancer therapy. Anti-Canc Agents Med Chem 9: 763–777.

    Article  CAS  Google Scholar 

  • Schneider-Jakob S, Corazza N, Badmann A, Sidler D, Stuber-Roos R, Keogh A et al. (2010). Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid. Cell Death Dis 1: e86.

    Article  CAS  Google Scholar 

  • Steensma DP . (2010). Novel therapies for myelodysplastic syndromes. Hematol Oncol Clin North Am 24: 423–441.

    Article  Google Scholar 

  • Strahl BD, Huang HJ, Pedersen NR, Wu JC, Ghosh BR, Miller WL . (1997). Two proximal activating protein-1-binding sites are sufficient to stimulate transcription of the ovine follicle-stimulating hormone-beta gene. Endocrinology 138: 2621–2631.

    Article  CAS  Google Scholar 

  • Tew KD . (2005). TLK-286: a novel glutathione S-transferase-activated prodrug. Expert Opin Investig Drugs 14: 1047–1054.

    Article  CAS  Google Scholar 

  • Tew KD, Bomber AM, Hoffman SJ . (1988). Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res 48: 3622–3625.

    CAS  PubMed  Google Scholar 

  • Townsend DM, Tew KD . (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22: 7369–7375.

    Article  CAS  Google Scholar 

  • Villafania A, Anwar K, Amar S, Chie L, Way D, Chung DL et al. (2000). Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci 30: 57–64.

    CAS  PubMed  Google Scholar 

  • Wagner EF, Nebreda AR . (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

    Article  CAS  Google Scholar 

  • Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA . (1998). Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19: 275–280.

    Article  CAS  Google Scholar 

  • Webb C, Bedwell C, Guth A, Avery P, Dow S . (2006). Use of flow cytometry and monochlorobimane to quantitate intracellular glutathione concentrations in feline leukocytes. Vet Immunol Immunopathol 112: 129–140.

    Article  CAS  Google Scholar 

  • Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW . (2005). Colorectal cancer. Lancet 365: 153–165.

    Article  Google Scholar 

  • Yang SY, Sales KM, Fuller B, Seifalian AM, Winslet MC . (2009). Apoptosis and colorectal cancer: implications for therapy. Trends Mol Med 15: 225–233.

    Article  CAS  Google Scholar 

  • Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z . (2000). Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 60: 4053–4057.

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Brunner and Corazza lab for their excellent technical help and scientific advice, Thomas Kaufmann from the Institute of Pharmacology, University of Berne for providing the antibodies, Philippe Bouillet from the Walter and Eliza Hall Institute, Melbourne, for the Bim promoter construct, Christian Leumann from the Department of Chemistry and Biochemistry, University of Bern for the synthesis of RM4819, and Vicky Hätzig and Thomas Herdegen, University of Kiel for expression plasmids. This work was supported by grants from the Swiss National Science Foundation, Oncosuisse and AFF grant from the University of Konstanz to Thomas Brunner. Daniel Sidler was supported by an MD-PhD fellowship from the Swiss National Science Foundation. Anette Brockmann was supported by a fellowship from the Graduate School Chemical Biology of the University of Konstanz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Brunner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidler, D., Brockmann, A., Mueller, J. et al. Thiazolide-induced apoptosis in colorectal cancer cells is mediated via the Jun kinase–Bim axis and reveals glutathione-S-transferase P1 as Achilles’ heel. Oncogene 31, 4095–4106 (2012). https://doi.org/10.1038/onc.2011.575

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.575

Keywords

This article is cited by

Search

Quick links