Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner

Abstract

Ribosomal proteins (RPs) activate the p53 tumour-suppressor protein upon disruption of the nucleolus. However, the exact mechanisms for p53 transcriptional activation through RPs are not well understood. We show that the RPL11 is rapidly but transiently recruited at promoter sites of p53-regulated genes upon nucleolar stress induced by actinomycin D (ActD). Characterisation of molecular events at p53 promoter sites shows that L11 is required for the recruitment of p53 transcriptional co-activators p300/CBP and p53 K382 acetylation. We found that direct binding to Mdm2 E3 ligase and NEDDylation of L11 are critical regulators for L11 promoter recruitment. Our data suggest that binding of L11 to Mdm2 at the promoter results in relief from Mdm2-mediated transcriptional repression of p53. Analysis of chromatin and RNA polymerase II markers suggests that L11 is involved in the initiation step of transcriptional activation. Furthermore, analysis of 36 ActD-induced genes shows that L11 and NEDD8 are global regulators of the p53 activation response. The studies provide insights on how nucleolar stress through L11 and NEDD8 can activate the transcriptional activity of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ashcroft M, Taya Y, Vousden KH . (2000). Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20: 3224–3233.

    Article  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

    Article  CAS  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181.

    Article  CAS  Google Scholar 

  • Bhat KP, Itahana K, Jin A, Zhang Y . (2004). Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 23: 2402–2412.

    Article  CAS  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI . (2010). The nucleolus under stress. Mol Cell 40: 216–227.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    Article  CAS  Google Scholar 

  • Choong ML, Yang H, Lee MA, Lane DP . (2009). Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8: 2810–2818.

    Article  CAS  Google Scholar 

  • Dai MS, Arnold H, Sun XX, Sears R, Lu H . (2007). Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 26: 3332–3345.

    Article  CAS  Google Scholar 

  • Dai MS, Sun XX, Lu H . (2010). Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression. J Biol Chem 285: 12587–12594.

    Article  CAS  Google Scholar 

  • Dikic I, Wakatsuki S, Walters KJ . (2009). Ubiquitin-binding domains–from structures to functions. Nat Rev Mol Cell Biol 10: 659–671.

    Article  CAS  Google Scholar 

  • Donati G, Bertoni S, Brighenti E, Vici M, TrerĂ© D, Volarevic S et al. (2011). The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 30: 3274–3288.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M et al. (1995). Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55: 2910–2919.

    CAS  PubMed  Google Scholar 

  • Espinosa JM . (2008). Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27: 4013–4023.

    Article  CAS  Google Scholar 

  • Espinosa JM, Verdun RE, Emerson BM . (2003). p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12: 1015–1027.

    Article  CAS  Google Scholar 

  • Fuchs SM, Laribee RN, Strahl BD . (2009). Protein modifications in transcription elongation. Biochim Biophys Acta 1789: 26–36.

    Article  CAS  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. (2009). Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11: 501–508.

    Article  CAS  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  Google Scholar 

  • Horn HF, Vousden KH . (2008). Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27: 5774–5784.

    Article  CAS  Google Scholar 

  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E et al. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20: 1331–1340.

    Article  CAS  Google Scholar 

  • Kruse JP, Gu W . (2009). Modes of p53 regulation. Cell 137: 609–622.

    Article  CAS  Google Scholar 

  • Lennartsson A, Ekwall K . (2009). Histone modification patterns and epigenetic codes. Biochim Biophys Acta 1790: 863–868.

    Article  CAS  Google Scholar 

  • Lindstrom MS . (2009). Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun 379: 167–170.

    Article  Google Scholar 

  • Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y . (2007). Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 27: 1056–1068.

    Article  CAS  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    Article  CAS  Google Scholar 

  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3: 577–587.

    Article  CAS  Google Scholar 

  • Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al. (2010). An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell 18: 231–243.

    Article  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ . (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  Google Scholar 

  • Montanaro L, Trere D, Derenzini M . (2008). Nucleolus, ribosomes, and cancer. Am J Pathol 173: 301–310.

    Article  CAS  Google Scholar 

  • Perry RP . (2007). Balanced production of ribosomal proteins. Gene 401: 1–3.

    Article  CAS  Google Scholar 

  • Perry RP, Kelley DE . (1970). Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol 76: 127–139.

    Article  CAS  Google Scholar 

  • Phatnani HP, Greenleaf AL . (2006). Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20: 2922–2936.

    Article  CAS  Google Scholar 

  • Prives C, Manley JL . (2001). Why is p53 acetylated? Cell 107: 815–818.

    Article  CAS  Google Scholar 

  • Rabut G, Peter M . (2008). Function and regulation of protein neddylation protein modifications: beyond the usual suspects’ review series. EMBO Rep 9: 969–976.

    Article  CAS  Google Scholar 

  • Rubbi CP, Milner J . (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.

    Article  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  Google Scholar 

  • Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC et al. (2004). Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279: 42169–42181.

    Article  CAS  Google Scholar 

  • Sun XX, Wang YG, Xirodimas DP, Dai MS . (2010). Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation. J Biol Chem 285: 25812–25821.

    Article  CAS  Google Scholar 

  • Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP . (2009). Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10: 1132–1139.

    Article  CAS  Google Scholar 

  • Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . (2008). Acetylation is indispensable for p53 activation. Cell 133: 612–626.

    Article  CAS  Google Scholar 

  • Thut CJ, Goodrich JA, Tjian R . (1997). Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11: 1974–1986.

    Article  CAS  Google Scholar 

  • Wade M, Wang YV, Wahl GM . (2010). The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20: 299–309.

    Article  CAS  Google Scholar 

  • Wang M, Medeiros BC, Erba HP, Deangelo DJ, Giles FJ, Swords RT . (2011). Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer. Expert Opin Ther Targets 15: 253–264.

    Article  CAS  Google Scholar 

  • Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM . (2007). Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci USA 104: 12365–12370.

    Article  CAS  Google Scholar 

  • Watson IR, Irwin MS, Ohh M . (2011). NEDD8 pathways in cancer, sine quibus non. Cancer Cell 19: 168–176.

    Article  CAS  Google Scholar 

  • Welchman RL, Gordon C, Mayer RJ . (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6: 599–609.

    Article  CAS  Google Scholar 

  • Xirodimas DP . (2008). Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem Soc Trans 36: 802–806.

    Article  CAS  Google Scholar 

  • Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT . (2008). Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep 9: 280–286.

    Article  CAS  Google Scholar 

  • Zhang Y, Lu H . (2009). Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369–377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research in the DPX laboratory is supported by the Association for International Cancer Research (AICR) and INSERM. DPX is an AICR Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D P Xirodimas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahata, B., Sundqvist, A. & Xirodimas, D. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31, 3060–3071 (2012). https://doi.org/10.1038/onc.2011.482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.482

Keywords

This article is cited by

Search

Quick links